Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893815961> ?p ?o ?g. }
- W2893815961 endingPage "852" @default.
- W2893815961 startingPage "840" @default.
- W2893815961 abstract "Wind energy is the intermittent energy and its output has great volatility. How to accurately predict wind power output is a problem that many researchers have been paying attention to and urgently need to solve. In this paper, a deep belief network (DBN) model is developed for wind power forecasting. The numerical weather prediction (NWP) data was selected as the input of the proposed model and the data directly affects the prediction precision. The NWP data and wind data in the wind farm have the similar characteristics. Therefore, in this paper the k-means clustering algorithm was joined to deal with the NWP data. Through clustering analysis, a large number of NWP samples, which has the great influence in forecasting accuracy, are chosen as the input of the DBN model to improve the efficiency of the model. The DBN model was validated by the Sotavento wind farm in Spain. The results of DBN forecasting were compared with those of Back-propagation neural network (BP) and Morlet wavelet neural network (MWNN). The results show that the forecasting error of DBN model was mostly at a small level, and the forecasting accuracy of the proposed method outperforms BP and MWNN by more than 44%." @default.
- W2893815961 created "2018-10-05" @default.
- W2893815961 creator A5035898198 @default.
- W2893815961 creator A5039151873 @default.
- W2893815961 creator A5040454155 @default.
- W2893815961 creator A5077619274 @default.
- W2893815961 date "2018-12-01" @default.
- W2893815961 modified "2023-10-16" @default.
- W2893815961 title "Deep belief network based k-means cluster approach for short-term wind power forecasting" @default.
- W2893815961 cites W1495476169 @default.
- W2893815961 cites W1705374184 @default.
- W2893815961 cites W1970392686 @default.
- W2893815961 cites W1984061847 @default.
- W2893815961 cites W2006493581 @default.
- W2893815961 cites W2037845744 @default.
- W2893815961 cites W2055221518 @default.
- W2893815961 cites W2083022762 @default.
- W2893815961 cites W2116540796 @default.
- W2893815961 cites W2136922672 @default.
- W2893815961 cites W2142809749 @default.
- W2893815961 cites W2284381800 @default.
- W2893815961 cites W2285130932 @default.
- W2893815961 cites W2294198843 @default.
- W2893815961 cites W2408679248 @default.
- W2893815961 cites W2413927587 @default.
- W2893815961 cites W2469077086 @default.
- W2893815961 cites W2511683089 @default.
- W2893815961 cites W2560370080 @default.
- W2893815961 cites W2600292797 @default.
- W2893815961 cites W2604099671 @default.
- W2893815961 cites W2606817745 @default.
- W2893815961 cites W2608285811 @default.
- W2893815961 cites W2611960672 @default.
- W2893815961 cites W2616881109 @default.
- W2893815961 cites W2716001926 @default.
- W2893815961 cites W2725236716 @default.
- W2893815961 cites W2757312963 @default.
- W2893815961 cites W2765931305 @default.
- W2893815961 cites W2774089322 @default.
- W2893815961 cites W2792267068 @default.
- W2893815961 cites W2804705402 @default.
- W2893815961 cites W2804860796 @default.
- W2893815961 cites W2808707997 @default.
- W2893815961 doi "https://doi.org/10.1016/j.energy.2018.09.118" @default.
- W2893815961 hasPublicationYear "2018" @default.
- W2893815961 type Work @default.
- W2893815961 sameAs 2893815961 @default.
- W2893815961 citedByCount "190" @default.
- W2893815961 countsByYear W28938159612019 @default.
- W2893815961 countsByYear W28938159612020 @default.
- W2893815961 countsByYear W28938159612021 @default.
- W2893815961 countsByYear W28938159612022 @default.
- W2893815961 countsByYear W28938159612023 @default.
- W2893815961 crossrefType "journal-article" @default.
- W2893815961 hasAuthorship W2893815961A5035898198 @default.
- W2893815961 hasAuthorship W2893815961A5039151873 @default.
- W2893815961 hasAuthorship W2893815961A5040454155 @default.
- W2893815961 hasAuthorship W2893815961A5077619274 @default.
- W2893815961 hasConcept C119599485 @default.
- W2893815961 hasConcept C121332964 @default.
- W2893815961 hasConcept C124101348 @default.
- W2893815961 hasConcept C127413603 @default.
- W2893815961 hasConcept C147947694 @default.
- W2893815961 hasConcept C149782125 @default.
- W2893815961 hasConcept C153294291 @default.
- W2893815961 hasConcept C154945302 @default.
- W2893815961 hasConcept C161067210 @default.
- W2893815961 hasConcept C163258240 @default.
- W2893815961 hasConcept C196216189 @default.
- W2893815961 hasConcept C205649164 @default.
- W2893815961 hasConcept C2778280487 @default.
- W2893815961 hasConcept C2781084341 @default.
- W2893815961 hasConcept C33923547 @default.
- W2893815961 hasConcept C41008148 @default.
- W2893815961 hasConcept C46286280 @default.
- W2893815961 hasConcept C47432892 @default.
- W2893815961 hasConcept C50644808 @default.
- W2893815961 hasConcept C62520636 @default.
- W2893815961 hasConcept C73555534 @default.
- W2893815961 hasConcept C78600449 @default.
- W2893815961 hasConcept C89227174 @default.
- W2893815961 hasConcept C91602232 @default.
- W2893815961 hasConcept C97385483 @default.
- W2893815961 hasConceptScore W2893815961C119599485 @default.
- W2893815961 hasConceptScore W2893815961C121332964 @default.
- W2893815961 hasConceptScore W2893815961C124101348 @default.
- W2893815961 hasConceptScore W2893815961C127413603 @default.
- W2893815961 hasConceptScore W2893815961C147947694 @default.
- W2893815961 hasConceptScore W2893815961C149782125 @default.
- W2893815961 hasConceptScore W2893815961C153294291 @default.
- W2893815961 hasConceptScore W2893815961C154945302 @default.
- W2893815961 hasConceptScore W2893815961C161067210 @default.
- W2893815961 hasConceptScore W2893815961C163258240 @default.
- W2893815961 hasConceptScore W2893815961C196216189 @default.
- W2893815961 hasConceptScore W2893815961C205649164 @default.
- W2893815961 hasConceptScore W2893815961C2778280487 @default.
- W2893815961 hasConceptScore W2893815961C2781084341 @default.
- W2893815961 hasConceptScore W2893815961C33923547 @default.