Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893821470> ?p ?o ?g. }
- W2893821470 endingPage "899" @default.
- W2893821470 startingPage "892" @default.
- W2893821470 abstract "The aim of this study is to predict the risk of severe acute pancreatitis (SAP) associated with acute lung injury (ALI) by artificial neural networks (ANNs) model. The ANNs and logistic regression model were constructed using clinical and laboratory data of 217 SAP patients. The models were first trained on 152 randomly chosen patients, validated and tested on the 33 patients and 32 patients respectively. Statistical indices were used to evaluate the value of the forecast in two models. The training set, validation set and test set were not significantly different for any of the 13 variables. After training, the back propagation network retained excellent pattern recognition ability. When the ANNs model was applied to the test set, it revealed a sensitivity of 87.5%, specificity of 83.3%. The accuracy was 84.43%. Significant differences could be found between ANNs model and logistic regression model in these parameter. When ANNs model was used to identify ALI, the area under receiver operating characteristic curve was 0.859 ± 0.048, which demonstrated the better overall properties than logistic regression modeling (AUC = 0.701 + 0.041) (95% CI: 0.664–0.857). Meanwhile, pancreatic necrosis rate, lactic dehydrogenase and oxyhemoglobin saturation were the important factors among all thirteen independent variable for ALI. The ANNs model was a valuable tool in dealing with the clinical risk prediction problem of ALI following to SAP. In addition, our approach can extract informative risk factors of ALI via the ANNs model." @default.
- W2893821470 created "2018-10-05" @default.
- W2893821470 creator A5029815331 @default.
- W2893821470 creator A5040507070 @default.
- W2893821470 creator A5087909041 @default.
- W2893821470 date "2018-12-01" @default.
- W2893821470 modified "2023-10-07" @default.
- W2893821470 title "Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis" @default.
- W2893821470 cites W105869727 @default.
- W2893821470 cites W1780477915 @default.
- W2893821470 cites W1975555152 @default.
- W2893821470 cites W1981976602 @default.
- W2893821470 cites W1983835691 @default.
- W2893821470 cites W2024812465 @default.
- W2893821470 cites W2025919892 @default.
- W2893821470 cites W2043182541 @default.
- W2893821470 cites W2056193118 @default.
- W2893821470 cites W2068436393 @default.
- W2893821470 cites W2068854215 @default.
- W2893821470 cites W2086876904 @default.
- W2893821470 cites W2093785474 @default.
- W2893821470 cites W2136033222 @default.
- W2893821470 cites W2145758369 @default.
- W2893821470 cites W2149407433 @default.
- W2893821470 cites W2156133368 @default.
- W2893821470 cites W2185426960 @default.
- W2893821470 cites W2315060376 @default.
- W2893821470 cites W2347139574 @default.
- W2893821470 cites W2472023838 @default.
- W2893821470 cites W2515748395 @default.
- W2893821470 cites W2555652910 @default.
- W2893821470 cites W2566899734 @default.
- W2893821470 cites W2582220857 @default.
- W2893821470 cites W2612816431 @default.
- W2893821470 cites W2727127822 @default.
- W2893821470 cites W2791441828 @default.
- W2893821470 cites W2793681183 @default.
- W2893821470 cites W2794393374 @default.
- W2893821470 cites W2799401390 @default.
- W2893821470 doi "https://doi.org/10.1016/j.pan.2018.09.007" @default.
- W2893821470 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30268673" @default.
- W2893821470 hasPublicationYear "2018" @default.
- W2893821470 type Work @default.
- W2893821470 sameAs 2893821470 @default.
- W2893821470 citedByCount "34" @default.
- W2893821470 countsByYear W28938214702019 @default.
- W2893821470 countsByYear W28938214702020 @default.
- W2893821470 countsByYear W28938214702021 @default.
- W2893821470 countsByYear W28938214702022 @default.
- W2893821470 countsByYear W28938214702023 @default.
- W2893821470 crossrefType "journal-article" @default.
- W2893821470 hasAuthorship W2893821470A5029815331 @default.
- W2893821470 hasAuthorship W2893821470A5040507070 @default.
- W2893821470 hasAuthorship W2893821470A5087909041 @default.
- W2893821470 hasConcept C105795698 @default.
- W2893821470 hasConcept C119857082 @default.
- W2893821470 hasConcept C126322002 @default.
- W2893821470 hasConcept C151956035 @default.
- W2893821470 hasConcept C154945302 @default.
- W2893821470 hasConcept C169903167 @default.
- W2893821470 hasConcept C2776670229 @default.
- W2893821470 hasConcept C33923547 @default.
- W2893821470 hasConcept C41008148 @default.
- W2893821470 hasConcept C50644808 @default.
- W2893821470 hasConcept C58471807 @default.
- W2893821470 hasConcept C71924100 @default.
- W2893821470 hasConceptScore W2893821470C105795698 @default.
- W2893821470 hasConceptScore W2893821470C119857082 @default.
- W2893821470 hasConceptScore W2893821470C126322002 @default.
- W2893821470 hasConceptScore W2893821470C151956035 @default.
- W2893821470 hasConceptScore W2893821470C154945302 @default.
- W2893821470 hasConceptScore W2893821470C169903167 @default.
- W2893821470 hasConceptScore W2893821470C2776670229 @default.
- W2893821470 hasConceptScore W2893821470C33923547 @default.
- W2893821470 hasConceptScore W2893821470C41008148 @default.
- W2893821470 hasConceptScore W2893821470C50644808 @default.
- W2893821470 hasConceptScore W2893821470C58471807 @default.
- W2893821470 hasConceptScore W2893821470C71924100 @default.
- W2893821470 hasFunder F4320324852 @default.
- W2893821470 hasIssue "8" @default.
- W2893821470 hasLocation W28938214701 @default.
- W2893821470 hasLocation W28938214702 @default.
- W2893821470 hasOpenAccess W2893821470 @default.
- W2893821470 hasPrimaryLocation W28938214701 @default.
- W2893821470 hasRelatedWork W2799952019 @default.
- W2893821470 hasRelatedWork W3030120955 @default.
- W2893821470 hasRelatedWork W3032662949 @default.
- W2893821470 hasRelatedWork W3047552631 @default.
- W2893821470 hasRelatedWork W3099386970 @default.
- W2893821470 hasRelatedWork W3099765033 @default.
- W2893821470 hasRelatedWork W3159096857 @default.
- W2893821470 hasRelatedWork W4280583453 @default.
- W2893821470 hasRelatedWork W4281827599 @default.
- W2893821470 hasRelatedWork W4367596031 @default.
- W2893821470 hasVolume "18" @default.
- W2893821470 isParatext "false" @default.
- W2893821470 isRetracted "false" @default.
- W2893821470 magId "2893821470" @default.