Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893837441> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2893837441 abstract "Colorectal cancer is the third-most common form of cancer among American men and women. Like most tumors, colon cancer is sustained by a subpopulation of “stem cells” that possess the ability to self-renew and differentiate into more specialized cell types. It would be useful to detect stem cells in images of colon cancer tissue, but the first step in being able to do so is to know what genes are expressed in the stem cells and how to detect their expression pattern from the tissue images. Machine learning (ML) is a powerful tool that is widely used in biological research as a novel and innovative technique to facilitate rapid diagnosis of cancer. The current study demonstrates the feasibility and effectiveness of using ML techniques to rapidly detect the expression of the gene MUC2 (mucin 2) in colon cancer tissue images. We analyzed histological images of colon cancer and segmented the nuclei to look for features (area, perimeter, eccentricity, compactness, etc.) that correlate with high or low levels of MUC2. Grid search was then run on this data set to tune the hyper-parameters, and the following models were tested as potential classifiers: random forest, gradient boosting, decision trees with AdaBoost, and support vector machines. Of all of the tested models, it was found that the random forest classifier (f1 score of 0.71) and the gradient boosting classifier (f1 score of 0.72) were able to predict the output label most accurately. Under certain conditions, we have identified four features that have predictive capabilities. Predicting individual gene expression with machine learning is the first step in detecting genes that are specific to cancer stem cells in the early stages of cancer, while there is still hope for a cure." @default.
- W2893837441 created "2018-10-05" @default.
- W2893837441 creator A5084653317 @default.
- W2893837441 date "2018-01-01" @default.
- W2893837441 modified "2023-09-27" @default.
- W2893837441 title "Utilizing Machine Learning Techniques to Rapidly Identify MUC2 Expression in Colon Cancer Tissues" @default.
- W2893837441 cites W1595953005 @default.
- W2893837441 cites W2090867005 @default.
- W2893837441 cites W2431979144 @default.
- W2893837441 cites W2620578070 @default.
- W2893837441 cites W2765774350 @default.
- W2893837441 cites W2004686526 @default.
- W2893837441 doi "https://doi.org/10.7907/sapn-r691." @default.
- W2893837441 hasPublicationYear "2018" @default.
- W2893837441 type Work @default.
- W2893837441 sameAs 2893837441 @default.
- W2893837441 citedByCount "0" @default.
- W2893837441 crossrefType "dissertation" @default.
- W2893837441 hasAuthorship W2893837441A5084653317 @default.
- W2893837441 hasConcept C119857082 @default.
- W2893837441 hasConcept C121608353 @default.
- W2893837441 hasConcept C12267149 @default.
- W2893837441 hasConcept C126322002 @default.
- W2893837441 hasConcept C136302470 @default.
- W2893837441 hasConcept C141404830 @default.
- W2893837441 hasConcept C153180895 @default.
- W2893837441 hasConcept C154945302 @default.
- W2893837441 hasConcept C169258074 @default.
- W2893837441 hasConcept C28328180 @default.
- W2893837441 hasConcept C41008148 @default.
- W2893837441 hasConcept C46686674 @default.
- W2893837441 hasConcept C526805850 @default.
- W2893837441 hasConcept C54355233 @default.
- W2893837441 hasConcept C55427017 @default.
- W2893837441 hasConcept C70153297 @default.
- W2893837441 hasConcept C71924100 @default.
- W2893837441 hasConcept C84525736 @default.
- W2893837441 hasConcept C86803240 @default.
- W2893837441 hasConcept C95623464 @default.
- W2893837441 hasConceptScore W2893837441C119857082 @default.
- W2893837441 hasConceptScore W2893837441C121608353 @default.
- W2893837441 hasConceptScore W2893837441C12267149 @default.
- W2893837441 hasConceptScore W2893837441C126322002 @default.
- W2893837441 hasConceptScore W2893837441C136302470 @default.
- W2893837441 hasConceptScore W2893837441C141404830 @default.
- W2893837441 hasConceptScore W2893837441C153180895 @default.
- W2893837441 hasConceptScore W2893837441C154945302 @default.
- W2893837441 hasConceptScore W2893837441C169258074 @default.
- W2893837441 hasConceptScore W2893837441C28328180 @default.
- W2893837441 hasConceptScore W2893837441C41008148 @default.
- W2893837441 hasConceptScore W2893837441C46686674 @default.
- W2893837441 hasConceptScore W2893837441C526805850 @default.
- W2893837441 hasConceptScore W2893837441C54355233 @default.
- W2893837441 hasConceptScore W2893837441C55427017 @default.
- W2893837441 hasConceptScore W2893837441C70153297 @default.
- W2893837441 hasConceptScore W2893837441C71924100 @default.
- W2893837441 hasConceptScore W2893837441C84525736 @default.
- W2893837441 hasConceptScore W2893837441C86803240 @default.
- W2893837441 hasConceptScore W2893837441C95623464 @default.
- W2893837441 hasLocation W28938374411 @default.
- W2893837441 hasOpenAccess W2893837441 @default.
- W2893837441 hasPrimaryLocation W28938374411 @default.
- W2893837441 hasRelatedWork W1532221683 @default.
- W2893837441 hasRelatedWork W153848716 @default.
- W2893837441 hasRelatedWork W1989647549 @default.
- W2893837441 hasRelatedWork W2069620150 @default.
- W2893837441 hasRelatedWork W2091432617 @default.
- W2893837441 hasRelatedWork W2108589405 @default.
- W2893837441 hasRelatedWork W2110626008 @default.
- W2893837441 hasRelatedWork W2376519806 @default.
- W2893837441 hasRelatedWork W2794731554 @default.
- W2893837441 hasRelatedWork W2900494148 @default.
- W2893837441 hasRelatedWork W2911592538 @default.
- W2893837441 hasRelatedWork W2963069379 @default.
- W2893837441 hasRelatedWork W3014321973 @default.
- W2893837441 hasRelatedWork W3084020430 @default.
- W2893837441 hasRelatedWork W3140490971 @default.
- W2893837441 hasRelatedWork W3163530261 @default.
- W2893837441 hasRelatedWork W3163990011 @default.
- W2893837441 hasRelatedWork W3179417188 @default.
- W2893837441 hasRelatedWork W3210692103 @default.
- W2893837441 hasRelatedWork W2188666490 @default.
- W2893837441 isParatext "false" @default.
- W2893837441 isRetracted "false" @default.
- W2893837441 magId "2893837441" @default.
- W2893837441 workType "dissertation" @default.