Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893849503> ?p ?o ?g. }
- W2893849503 startingPage "427716" @default.
- W2893849503 abstract "A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from different biological levels and origins into models. In this study, we use the recently proposed computational approach iSCHRUNK (in Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models), which combines Monte Carlo parameter sampling methods and machine learning techniques, in the context of Bayesian inference. Monte Carlo parameter sampling methods allow us to exploit synergies between different data sources and generate a population of kinetic models that are consistent with the available data and physicochemical laws. The machine learning allows us to data-mine the a priori generated kinetic parameters together with the integrated datasets and derive posterior distributions of kinetic parameters consistent with the observed physiology. In this work, we used iSCHRUNK to address a design question: can we identify which are the kinetic parameters and what are their values that give rise to a desired metabolic behavior? Such information is important for a wide variety of studies ranging from biotechnology to medicine. We used the proposed methodology to find parameters that ensure a rate improvement of the xylose uptake (XTR) in a glucose-xylose co-utilizing S. cerevisiae strain. Our results indicate that only three kinetic parameters need to be accurately characterized to describe the studied physiology, and ultimately to design and control the desired responses of the metabolism. This framework paves the way for a new generation of methods that will systematically integrate the wealth of available omics data and efficiently extract the information necessary for metabolic engineering and synthetic biology decisions." @default.
- W2893849503 created "2018-10-05" @default.
- W2893849503 creator A5026925271 @default.
- W2893849503 creator A5037008443 @default.
- W2893849503 creator A5056011141 @default.
- W2893849503 creator A5083973415 @default.
- W2893849503 date "2018-09-27" @default.
- W2893849503 modified "2023-10-01" @default.
- W2893849503 title "Model Classification for Uncertainty Reduction in Biochemical Kinetic Models" @default.
- W2893849503 cites W1019830208 @default.
- W2893849503 cites W1484198052 @default.
- W2893849503 cites W1505191356 @default.
- W2893849503 cites W1506281249 @default.
- W2893849503 cites W1516587313 @default.
- W2893849503 cites W1758405515 @default.
- W2893849503 cites W1793259860 @default.
- W2893849503 cites W1873506857 @default.
- W2893849503 cites W1901616594 @default.
- W2893849503 cites W1944909517 @default.
- W2893849503 cites W1968883826 @default.
- W2893849503 cites W1972863608 @default.
- W2893849503 cites W1982267716 @default.
- W2893849503 cites W1985258161 @default.
- W2893849503 cites W1985687822 @default.
- W2893849503 cites W1989263028 @default.
- W2893849503 cites W1990812533 @default.
- W2893849503 cites W1997972137 @default.
- W2893849503 cites W2000150815 @default.
- W2893849503 cites W2001619934 @default.
- W2893849503 cites W2012600591 @default.
- W2893849503 cites W2022238394 @default.
- W2893849503 cites W2032616735 @default.
- W2893849503 cites W2034961255 @default.
- W2893849503 cites W2035946163 @default.
- W2893849503 cites W2036348300 @default.
- W2893849503 cites W2042067428 @default.
- W2893849503 cites W2044189879 @default.
- W2893849503 cites W2046359382 @default.
- W2893849503 cites W2054774141 @default.
- W2893849503 cites W2062485161 @default.
- W2893849503 cites W2068918169 @default.
- W2893849503 cites W2070219149 @default.
- W2893849503 cites W2071659396 @default.
- W2893849503 cites W2073727170 @default.
- W2893849503 cites W2077019109 @default.
- W2893849503 cites W2091087653 @default.
- W2893849503 cites W2102633175 @default.
- W2893849503 cites W2105587783 @default.
- W2893849503 cites W2107409961 @default.
- W2893849503 cites W2109990759 @default.
- W2893849503 cites W2111652881 @default.
- W2893849503 cites W2112088012 @default.
- W2893849503 cites W2113282000 @default.
- W2893849503 cites W2115189047 @default.
- W2893849503 cites W2129476886 @default.
- W2893849503 cites W2136043941 @default.
- W2893849503 cites W2137544417 @default.
- W2893849503 cites W2140190241 @default.
- W2893849503 cites W2142750990 @default.
- W2893849503 cites W2150652611 @default.
- W2893849503 cites W2154126596 @default.
- W2893849503 cites W2155423555 @default.
- W2893849503 cites W2155612034 @default.
- W2893849503 cites W2155694597 @default.
- W2893849503 cites W2156472837 @default.
- W2893849503 cites W2161227644 @default.
- W2893849503 cites W2162880502 @default.
- W2893849503 cites W2164898811 @default.
- W2893849503 cites W2169006190 @default.
- W2893849503 cites W2263951705 @default.
- W2893849503 cites W2266907177 @default.
- W2893849503 cites W2404208291 @default.
- W2893849503 cites W2411515567 @default.
- W2893849503 cites W2470338435 @default.
- W2893849503 cites W2561960911 @default.
- W2893849503 cites W2588978745 @default.
- W2893849503 cites W2610046773 @default.
- W2893849503 cites W2616246685 @default.
- W2893849503 cites W2618265628 @default.
- W2893849503 cites W2622758479 @default.
- W2893849503 cites W2623883779 @default.
- W2893849503 cites W2627183108 @default.
- W2893849503 cites W2778455075 @default.
- W2893849503 cites W2783880833 @default.
- W2893849503 cites W2786204509 @default.
- W2893849503 cites W2792951589 @default.
- W2893849503 cites W2799061466 @default.
- W2893849503 cites W2806157403 @default.
- W2893849503 cites W2894896242 @default.
- W2893849503 cites W2940597298 @default.
- W2893849503 cites W2952978770 @default.
- W2893849503 cites W3030176383 @default.
- W2893849503 cites W3085162807 @default.
- W2893849503 cites W3099514962 @default.
- W2893849503 cites W76280356 @default.
- W2893849503 hasPublicationYear "2018" @default.
- W2893849503 type Work @default.
- W2893849503 sameAs 2893849503 @default.
- W2893849503 citedByCount "0" @default.