Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893861036> ?p ?o ?g. }
- W2893861036 endingPage "147" @default.
- W2893861036 startingPage "137" @default.
- W2893861036 abstract "Complex interactions between biodegradation and mass transfer of organic compounds drive the fate of pesticides in soil ecosystems. We hypothesized that, at the small-scale, co-location of degraders and pollutants in soils may be a prerequisite for efficient biodegradation of these chemicals. In non-co-localized micro-environments, however, diffusive and advective solute transport as well as active transport of microbial degraders towards their corresponding substrate may improve the accessibility of microbial substrates. The objective of this study was to test whether water flow can accelerate microbial pesticide degradation by facilitating the encounter of spatially separated pesticides and bacterial degraders at the millimeter scale. Combining natural and sterilized soil aggregates, we built soil cores with different spatial localizations of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) and microbial degraders: (i) homogeneous distribution of microorganisms and 2,4-D throughout the soil core, (ii) co-localized microorganisms and 2,4-D in a mm3 soil location, and iii) separated microorganisms and 2,4-D in two mm3 soil locations spaced 1 cm apart. Following the fate of 14C labelled 2,4-D (mineralization, extractable and non-extractable residues) as well as the abundance of bacterial 2,4-D degraders harboring the tfdA gene over an incubation period of 24 days, we observed decreased biodegradation of 2,4-D with increasing spatial separation between substrate and bacterial degraders. We found evidence that advection is a key process controlling the accessibility of 2,4-D and pesticide degraders. Advective solute transport induced leaching of about 50% of the initially applied 2,4-D regardless of initial spatial distribution patterns. Simultaneously, advective transport of 2,4-D and bacterial degraders triggered their re-encounter and compensated for the leaching-induced separation of initially co-localized microorganisms and 2,4-D. This resulted in effective biodegradation of 2,4-D, comparable to the homogeneous treatment. Similarly, advective transport processes brought substrate and degraders into contact if both were initially separated. Thus, advection more effectively removed bioaccessibility limitations to pesticide degradation than diffusive transport alone. These results emphasize the importance of considering spatial microbial ecology as well as biogeophysics at the mm scale to better understand the fate of pesticides at larger scales in soil." @default.
- W2893861036 created "2018-10-05" @default.
- W2893861036 creator A5006455766 @default.
- W2893861036 creator A5007541789 @default.
- W2893861036 creator A5017463435 @default.
- W2893861036 creator A5021392880 @default.
- W2893861036 creator A5026328909 @default.
- W2893861036 creator A5069664695 @default.
- W2893861036 creator A5088077808 @default.
- W2893861036 creator A5091068098 @default.
- W2893861036 date "2018-12-01" @default.
- W2893861036 modified "2023-10-17" @default.
- W2893861036 title "Water flow drives small scale biogeography of pesticides and bacterial pesticide degraders - A microcosm study using 2,4-D as a model compound" @default.
- W2893861036 cites W1480750958 @default.
- W2893861036 cites W1528836402 @default.
- W2893861036 cites W1529838344 @default.
- W2893861036 cites W1684088716 @default.
- W2893861036 cites W1858689923 @default.
- W2893861036 cites W1861627615 @default.
- W2893861036 cites W1864063210 @default.
- W2893861036 cites W1970340405 @default.
- W2893861036 cites W1970479521 @default.
- W2893861036 cites W1976910523 @default.
- W2893861036 cites W1979203368 @default.
- W2893861036 cites W1981594719 @default.
- W2893861036 cites W1983698174 @default.
- W2893861036 cites W1983702607 @default.
- W2893861036 cites W1983836733 @default.
- W2893861036 cites W1994301660 @default.
- W2893861036 cites W1998800612 @default.
- W2893861036 cites W2004532588 @default.
- W2893861036 cites W2011110609 @default.
- W2893861036 cites W2018921856 @default.
- W2893861036 cites W2035667451 @default.
- W2893861036 cites W2035947651 @default.
- W2893861036 cites W2035996947 @default.
- W2893861036 cites W2038431903 @default.
- W2893861036 cites W2040820883 @default.
- W2893861036 cites W2046688908 @default.
- W2893861036 cites W2049706107 @default.
- W2893861036 cites W2054126173 @default.
- W2893861036 cites W2054393704 @default.
- W2893861036 cites W2055484337 @default.
- W2893861036 cites W2059060580 @default.
- W2893861036 cites W2071440856 @default.
- W2893861036 cites W2078274589 @default.
- W2893861036 cites W2086668070 @default.
- W2893861036 cites W2091013729 @default.
- W2893861036 cites W2091365532 @default.
- W2893861036 cites W2097129137 @default.
- W2893861036 cites W2111771961 @default.
- W2893861036 cites W2117916043 @default.
- W2893861036 cites W2130824974 @default.
- W2893861036 cites W2134425065 @default.
- W2893861036 cites W2135312834 @default.
- W2893861036 cites W2143282195 @default.
- W2893861036 cites W2145244154 @default.
- W2893861036 cites W2147305828 @default.
- W2893861036 cites W2318707881 @default.
- W2893861036 cites W2472784225 @default.
- W2893861036 cites W2517502947 @default.
- W2893861036 cites W2527324800 @default.
- W2893861036 cites W2531217358 @default.
- W2893861036 cites W2555710043 @default.
- W2893861036 cites W3123757454 @default.
- W2893861036 cites W356335595 @default.
- W2893861036 cites W924953569 @default.
- W2893861036 doi "https://doi.org/10.1016/j.soilbio.2018.09.024" @default.
- W2893861036 hasPublicationYear "2018" @default.
- W2893861036 type Work @default.
- W2893861036 sameAs 2893861036 @default.
- W2893861036 citedByCount "9" @default.
- W2893861036 countsByYear W28938610362019 @default.
- W2893861036 countsByYear W28938610362020 @default.
- W2893861036 countsByYear W28938610362021 @default.
- W2893861036 countsByYear W28938610362022 @default.
- W2893861036 countsByYear W28938610362023 @default.
- W2893861036 crossrefType "journal-article" @default.
- W2893861036 hasAuthorship W2893861036A5006455766 @default.
- W2893861036 hasAuthorship W2893861036A5007541789 @default.
- W2893861036 hasAuthorship W2893861036A5017463435 @default.
- W2893861036 hasAuthorship W2893861036A5021392880 @default.
- W2893861036 hasAuthorship W2893861036A5026328909 @default.
- W2893861036 hasAuthorship W2893861036A5069664695 @default.
- W2893861036 hasAuthorship W2893861036A5088077808 @default.
- W2893861036 hasAuthorship W2893861036A5091068098 @default.
- W2893861036 hasConcept C107872376 @default.
- W2893861036 hasConcept C111696902 @default.
- W2893861036 hasConcept C12521501 @default.
- W2893861036 hasConcept C157021035 @default.
- W2893861036 hasConcept C159390177 @default.
- W2893861036 hasConcept C159750122 @default.
- W2893861036 hasConcept C161176658 @default.
- W2893861036 hasConcept C175605896 @default.
- W2893861036 hasConcept C178790620 @default.
- W2893861036 hasConcept C185592680 @default.
- W2893861036 hasConcept C18903297 @default.
- W2893861036 hasConcept C196222841 @default.