Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893880300> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2893880300 abstract "Machine learning is a branch of computer science that gives computers the ability to make predictions without explicitly being programmed. Machine learning enables computers to learn, as they process more and more data and make even more accurate predictions. Machine learning is becoming all pervasive in our daily lives, from speech recognition, medical diagnosis, customized content delivery, and product recommendations to advertisement placements to name a few. Knowingly or unknowingly, there is a very high chance that one would have encountered some form of machine learning several times in one’s daily activities. In cloud data centers, machine learning presents an opportunity to make systems autonomous and thus transforming data centers into those that are less error prone, secure, self tuning, and highly available. Mathematics forms the bedrock of machine learning. This paper aims at highlighting the concepts in mathematics that are essential for building machine learning systems. Topics in mathematics like linear algebra, probability theory and statistics, multivariate calculus, partial derivatives, and algorithmic optimizations are quintessential to implementing efficient machine learning systems. This paper will delve into a few of the aforementioned areas to bring out core concepts necessary for machine learning. Topics like principal component analysis, matrix computation, gradient descent algorithms are a few of them covered in this paper. This paper attempts to give the reader a panoramic view of the mathematical landscape of machine learning." @default.
- W2893880300 created "2018-10-05" @default.
- W2893880300 creator A5073425347 @default.
- W2893880300 creator A5088785554 @default.
- W2893880300 date "2018-01-01" @default.
- W2893880300 modified "2023-09-27" @default.
- W2893880300 title "Mathematics and Machine Learning" @default.
- W2893880300 cites W114517082 @default.
- W2893880300 cites W2165612380 @default.
- W2893880300 doi "https://doi.org/10.1007/978-981-13-2095-8_12" @default.
- W2893880300 hasPublicationYear "2018" @default.
- W2893880300 type Work @default.
- W2893880300 sameAs 2893880300 @default.
- W2893880300 citedByCount "1" @default.
- W2893880300 countsByYear W28938803002019 @default.
- W2893880300 crossrefType "book-chapter" @default.
- W2893880300 hasAuthorship W2893880300A5073425347 @default.
- W2893880300 hasAuthorship W2893880300A5088785554 @default.
- W2893880300 hasConcept C11413529 @default.
- W2893880300 hasConcept C115903097 @default.
- W2893880300 hasConcept C119857082 @default.
- W2893880300 hasConcept C154945302 @default.
- W2893880300 hasConcept C32254414 @default.
- W2893880300 hasConcept C41008148 @default.
- W2893880300 hasConcept C50292564 @default.
- W2893880300 hasConcept C77967617 @default.
- W2893880300 hasConceptScore W2893880300C11413529 @default.
- W2893880300 hasConceptScore W2893880300C115903097 @default.
- W2893880300 hasConceptScore W2893880300C119857082 @default.
- W2893880300 hasConceptScore W2893880300C154945302 @default.
- W2893880300 hasConceptScore W2893880300C32254414 @default.
- W2893880300 hasConceptScore W2893880300C41008148 @default.
- W2893880300 hasConceptScore W2893880300C50292564 @default.
- W2893880300 hasConceptScore W2893880300C77967617 @default.
- W2893880300 hasLocation W28938803001 @default.
- W2893880300 hasOpenAccess W2893880300 @default.
- W2893880300 hasPrimaryLocation W28938803001 @default.
- W2893880300 hasRelatedWork W1480755905 @default.
- W2893880300 hasRelatedWork W1507957806 @default.
- W2893880300 hasRelatedWork W1538284376 @default.
- W2893880300 hasRelatedWork W1549998098 @default.
- W2893880300 hasRelatedWork W1977022689 @default.
- W2893880300 hasRelatedWork W1984617846 @default.
- W2893880300 hasRelatedWork W2164940202 @default.
- W2893880300 hasRelatedWork W2184490211 @default.
- W2893880300 hasRelatedWork W23002638 @default.
- W2893880300 hasRelatedWork W2343083056 @default.
- W2893880300 hasRelatedWork W2593224728 @default.
- W2893880300 hasRelatedWork W2776525492 @default.
- W2893880300 hasRelatedWork W2791873009 @default.
- W2893880300 hasRelatedWork W2810716043 @default.
- W2893880300 hasRelatedWork W3028901943 @default.
- W2893880300 hasRelatedWork W3104599990 @default.
- W2893880300 hasRelatedWork W3106190555 @default.
- W2893880300 hasRelatedWork W657613351 @default.
- W2893880300 hasRelatedWork W8557751 @default.
- W2893880300 hasRelatedWork W3034669015 @default.
- W2893880300 isParatext "false" @default.
- W2893880300 isRetracted "false" @default.
- W2893880300 magId "2893880300" @default.
- W2893880300 workType "book-chapter" @default.