Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893880892> ?p ?o ?g. }
- W2893880892 endingPage "57" @default.
- W2893880892 startingPage "41" @default.
- W2893880892 abstract "Omics, such as genomics, transcriptome and proteomics, has been affected by the era of big data. A huge amount of high dimensional and complex structured data has made it no longer applicable for conventional machine learning algorithms. Fortunately, deep learning technology can contribute toward resolving these challenges. There is evidence that deep learning can handle omics data well and resolve omics problems. This survey aims to provide an entry-level guideline for researchers, to understand and use deep learning in order to solve omics problems. We first introduce several deep learning models and then discuss several research areas which have combined omics and deep learning in recent years. In addition, we summarize the general steps involved in using deep learning which have not yet been systematically discussed in the existent literature on this topic. Finally, we compare the features and performance of current mainstream open source deep learning frameworks and present the opportunities and challenges involved in deep learning. This survey will be a good starting point and guideline for omics researchers to understand deep learning." @default.
- W2893880892 created "2018-10-05" @default.
- W2893880892 creator A5000688713 @default.
- W2893880892 creator A5000991048 @default.
- W2893880892 creator A5004351132 @default.
- W2893880892 creator A5017426085 @default.
- W2893880892 creator A5018805094 @default.
- W2893880892 creator A5056714859 @default.
- W2893880892 creator A5078793726 @default.
- W2893880892 date "2018-09-26" @default.
- W2893880892 modified "2023-10-16" @default.
- W2893880892 title "Deep learning in omics: a survey and guideline" @default.
- W2893880892 cites W1019830208 @default.
- W2893880892 cites W1568929544 @default.
- W2893880892 cites W1596947964 @default.
- W2893880892 cites W1707446633 @default.
- W2893880892 cites W1951403192 @default.
- W2893880892 cites W1964655247 @default.
- W2893880892 cites W1967195968 @default.
- W2893880892 cites W1972498024 @default.
- W2893880892 cites W1982267716 @default.
- W2893880892 cites W1995341919 @default.
- W2893880892 cites W2001502878 @default.
- W2893880892 cites W2011582941 @default.
- W2893880892 cites W2016589492 @default.
- W2893880892 cites W2028501442 @default.
- W2893880892 cites W2040870580 @default.
- W2893880892 cites W2055043387 @default.
- W2893880892 cites W2059136964 @default.
- W2893880892 cites W2062920004 @default.
- W2893880892 cites W2064675550 @default.
- W2893880892 cites W2100495367 @default.
- W2893880892 cites W2103753221 @default.
- W2893880892 cites W2108101947 @default.
- W2893880892 cites W2115733720 @default.
- W2893880892 cites W2118258530 @default.
- W2893880892 cites W2121863487 @default.
- W2893880892 cites W2136922672 @default.
- W2893880892 cites W2144015117 @default.
- W2893880892 cites W2147800946 @default.
- W2893880892 cites W2156226201 @default.
- W2893880892 cites W2160784118 @default.
- W2893880892 cites W2165698076 @default.
- W2893880892 cites W2179302559 @default.
- W2893880892 cites W2198606573 @default.
- W2893880892 cites W2213443318 @default.
- W2893880892 cites W2243910093 @default.
- W2893880892 cites W2247766769 @default.
- W2893880892 cites W2259632819 @default.
- W2893880892 cites W2264017649 @default.
- W2893880892 cites W2306570595 @default.
- W2893880892 cites W2317111519 @default.
- W2893880892 cites W2336509392 @default.
- W2893880892 cites W2345512687 @default.
- W2893880892 cites W2397757171 @default.
- W2893880892 cites W2404901863 @default.
- W2893880892 cites W2415774299 @default.
- W2893880892 cites W2433743436 @default.
- W2893880892 cites W2479945688 @default.
- W2893880892 cites W2481094411 @default.
- W2893880892 cites W2502949459 @default.
- W2893880892 cites W2517582793 @default.
- W2893880892 cites W2533800772 @default.
- W2893880892 cites W2534288757 @default.
- W2893880892 cites W2546542913 @default.
- W2893880892 cites W2556131117 @default.
- W2893880892 cites W2557738935 @default.
- W2893880892 cites W2561981131 @default.
- W2893880892 cites W2580635372 @default.
- W2893880892 cites W2584305206 @default.
- W2893880892 cites W2584834072 @default.
- W2893880892 cites W2591130492 @default.
- W2893880892 cites W2611463039 @default.
- W2893880892 cites W2617750324 @default.
- W2893880892 cites W2618265628 @default.
- W2893880892 cites W2625681382 @default.
- W2893880892 cites W2626191279 @default.
- W2893880892 cites W2730472814 @default.
- W2893880892 cites W2742750032 @default.
- W2893880892 cites W2754293187 @default.
- W2893880892 cites W2761714660 @default.
- W2893880892 cites W2766300642 @default.
- W2893880892 cites W2766812108 @default.
- W2893880892 cites W2771423190 @default.
- W2893880892 cites W2772741766 @default.
- W2893880892 cites W2949867299 @default.
- W2893880892 cites W2949995114 @default.
- W2893880892 cites W2950463913 @default.
- W2893880892 cites W2950890882 @default.
- W2893880892 cites W2950980382 @default.
- W2893880892 cites W2951203227 @default.
- W2893880892 cites W2951572348 @default.
- W2893880892 cites W2951760474 @default.
- W2893880892 cites W2951901532 @default.
- W2893880892 cites W2952935243 @default.
- W2893880892 cites W2963674387 @default.
- W2893880892 cites W2963739921 @default.
- W2893880892 doi "https://doi.org/10.1093/bfgp/ely030" @default.