Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893882568> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2893882568 endingPage "102" @default.
- W2893882568 startingPage "51" @default.
- W2893882568 abstract "This chapter introduces correlations related to mass transfer for aerated and agitated system. Since aeration for the growth of microorganisms is essential, the measurement of dissolved oxygen concentration in fermentation broth is conducted. The respiration quotient for living cell and oxygen transfer rate (OTR) describes the biological activities; details of the process descriptions are given. Gas-hold up and mass transfer coefficients are calculated for the agitated and aerated fermentation vessel. This chapter covers two case studies conducted on: 1. OTR model in an aerated tank for pharmaceutical wastewater; 2. Fuel and chemical production from the water gas shift reaction by fermentation processes. The treatment of pharmaceutical nonpenicillin wastewater was conducted using a biological aerobic process. Oxygen transfer rate plays the major role in reducing the organic pollutants of the wastewater by removing gases, oils, volatile acids, and odor. The microbe used in the experiment was an ethanol producer, a type of fungus isolated from the wastewater. The optical density, chemical oxygen demand (COD), and concentration of chemicals equivalent to carbohydrate were measured for duration of three to four days aeration. Thus, the propagation of bacteria was monitored, and the growth rate was determined. The oxygen transfer rate and mass transfer coefficient were affected by airflow rate, bubble size, and agitation rate. Dissolved oxygen (DO) was shown as an indicator of microbial growth and limitation of mass transfer. The DO was about 7.89 ppm from the starting point; it then dropped to 2 ppm at the end of the first day. After the second day of aeration, the oxygen depletion was obviously determined since the DO meter showed 0.14 ppm. The aeration rate was 0.2–1.3 L min−1, for a working volume of 3 L and 5–10 L min−1 for a 15 L aerated tank. Maximum optical density was obtained with high aeration rate at the first day of aeration, 0.95 g L−1; as the aeration was reduced, the cell propagation also reduced, and the maximum cell growth was obtained at the end of the third day of aeration with minimum airflow rate. The maximum COD and carbohydrate reduction were 58 and 90%, respectively, with 1.15 L min−1 airflow rate in the 3 L aeration system. The bubble size affected the volumetric mass transfer coefficient (KL·a). As the surface of gas exposure to liquid increased, S1, the mass transfer coefficient, improved. As the DO rate dropped, the volumetric mass transfer coefficient also decreased. KL·a for airflow rates of five and 10 L min−1 for a 15 L aerated tank was 0.06 and 0.4 h−1, respectively." @default.
- W2893882568 created "2018-10-05" @default.
- W2893882568 creator A5038280669 @default.
- W2893882568 date "2015-01-01" @default.
- W2893882568 modified "2023-09-26" @default.
- W2893882568 title "Gas and Liquid System (Aeration and Agitation)∗∗This case study was partially written with contributions from:Maedeh Mohammadi, Faculty of Chemical Engineering, Noushirvani University of Technology, Babol, Iran." @default.
- W2893882568 cites W110813037 @default.
- W2893882568 cites W1754741574 @default.
- W2893882568 cites W1756186912 @default.
- W2893882568 cites W1976843045 @default.
- W2893882568 cites W1983902820 @default.
- W2893882568 cites W1984752705 @default.
- W2893882568 cites W1989583159 @default.
- W2893882568 cites W1989955017 @default.
- W2893882568 cites W1995770577 @default.
- W2893882568 cites W2004642019 @default.
- W2893882568 cites W2010364574 @default.
- W2893882568 cites W2016467705 @default.
- W2893882568 cites W2018175038 @default.
- W2893882568 cites W2019655737 @default.
- W2893882568 cites W2021375361 @default.
- W2893882568 cites W2022132371 @default.
- W2893882568 cites W2027835363 @default.
- W2893882568 cites W2039948440 @default.
- W2893882568 cites W2041078311 @default.
- W2893882568 cites W2047471404 @default.
- W2893882568 cites W2048191251 @default.
- W2893882568 cites W2071048111 @default.
- W2893882568 cites W2072988492 @default.
- W2893882568 cites W2074877030 @default.
- W2893882568 cites W2080937005 @default.
- W2893882568 cites W2086672805 @default.
- W2893882568 cites W2095411295 @default.
- W2893882568 cites W2110164995 @default.
- W2893882568 cites W2133432924 @default.
- W2893882568 cites W2145013175 @default.
- W2893882568 cites W2153546193 @default.
- W2893882568 cites W2154359131 @default.
- W2893882568 cites W2162529560 @default.
- W2893882568 cites W4248563788 @default.
- W2893882568 doi "https://doi.org/10.1016/b978-0-444-63357-6.00003-1" @default.
- W2893882568 hasPublicationYear "2015" @default.
- W2893882568 type Work @default.
- W2893882568 sameAs 2893882568 @default.
- W2893882568 citedByCount "2" @default.
- W2893882568 countsByYear W28938825682018 @default.
- W2893882568 countsByYear W28938825682021 @default.
- W2893882568 crossrefType "book-chapter" @default.
- W2893882568 hasAuthorship W2893882568A5038280669 @default.
- W2893882568 hasConcept C100544194 @default.
- W2893882568 hasConcept C101555633 @default.
- W2893882568 hasConcept C107872376 @default.
- W2893882568 hasConcept C127413603 @default.
- W2893882568 hasConcept C178790620 @default.
- W2893882568 hasConcept C185592680 @default.
- W2893882568 hasConcept C188287460 @default.
- W2893882568 hasConcept C31903555 @default.
- W2893882568 hasConcept C39432304 @default.
- W2893882568 hasConcept C43617362 @default.
- W2893882568 hasConcept C51038369 @default.
- W2893882568 hasConcept C528095902 @default.
- W2893882568 hasConcept C540031477 @default.
- W2893882568 hasConcept C86922832 @default.
- W2893882568 hasConcept C87717796 @default.
- W2893882568 hasConcept C94061648 @default.
- W2893882568 hasConceptScore W2893882568C100544194 @default.
- W2893882568 hasConceptScore W2893882568C101555633 @default.
- W2893882568 hasConceptScore W2893882568C107872376 @default.
- W2893882568 hasConceptScore W2893882568C127413603 @default.
- W2893882568 hasConceptScore W2893882568C178790620 @default.
- W2893882568 hasConceptScore W2893882568C185592680 @default.
- W2893882568 hasConceptScore W2893882568C188287460 @default.
- W2893882568 hasConceptScore W2893882568C31903555 @default.
- W2893882568 hasConceptScore W2893882568C39432304 @default.
- W2893882568 hasConceptScore W2893882568C43617362 @default.
- W2893882568 hasConceptScore W2893882568C51038369 @default.
- W2893882568 hasConceptScore W2893882568C528095902 @default.
- W2893882568 hasConceptScore W2893882568C540031477 @default.
- W2893882568 hasConceptScore W2893882568C86922832 @default.
- W2893882568 hasConceptScore W2893882568C87717796 @default.
- W2893882568 hasConceptScore W2893882568C94061648 @default.
- W2893882568 hasLocation W28938825681 @default.
- W2893882568 hasOpenAccess W2893882568 @default.
- W2893882568 hasPrimaryLocation W28938825681 @default.
- W2893882568 hasRelatedWork W2009210529 @default.
- W2893882568 hasRelatedWork W2033120254 @default.
- W2893882568 hasRelatedWork W2049353665 @default.
- W2893882568 hasRelatedWork W2104721773 @default.
- W2893882568 hasRelatedWork W2320967981 @default.
- W2893882568 hasRelatedWork W2390119490 @default.
- W2893882568 hasRelatedWork W2418470987 @default.
- W2893882568 hasRelatedWork W305023964 @default.
- W2893882568 hasRelatedWork W319141884 @default.
- W2893882568 hasRelatedWork W2509214676 @default.
- W2893882568 isParatext "false" @default.
- W2893882568 isRetracted "false" @default.
- W2893882568 magId "2893882568" @default.
- W2893882568 workType "book-chapter" @default.