Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893888003> ?p ?o ?g. }
- W2893888003 endingPage "942" @default.
- W2893888003 startingPage "922" @default.
- W2893888003 abstract "Recent developments in the field of machine learning offer new ways of modelling complex socio-spatial processes, allowing us to make predictions about how and where they might manifest in the future. Drawing on earlier empirical and theoretical attempts to understand gentrification and urban change, this paper shows it is possible to analyse existing patterns and processes of neighbourhood change to identify areas likely to experience change in the future. This is evidenced through an analysis of socio-economic transition in London neighbourhoods (based on 2001 and 2011 Census variables) which is used to predict those areas most likely to demonstrate ‘uplift’ or ‘decline’ by 2021. The paper concludes with a discussion of the implications of such modelling for the understanding of gentrification processes, noting that if qualitative work on gentrification and neighbourhood change is to offer more than a rigorous post-mortem then intensive, qualitative case studies must be confronted with – and complemented by – predictions stemming from other, more extensive approaches. As a demonstration of the capabilities of machine learning, this paper underlines the continuing value of quantitative approaches in understanding complex urban processes such as gentrification." @default.
- W2893888003 created "2018-10-05" @default.
- W2893888003 creator A5026103274 @default.
- W2893888003 creator A5037632129 @default.
- W2893888003 creator A5062782933 @default.
- W2893888003 date "2018-09-25" @default.
- W2893888003 modified "2023-10-03" @default.
- W2893888003 title "Understanding urban gentrification through machine learning" @default.
- W2893888003 cites W1532942539 @default.
- W2893888003 cites W1550027610 @default.
- W2893888003 cites W1592594380 @default.
- W2893888003 cites W1598868820 @default.
- W2893888003 cites W1699216418 @default.
- W2893888003 cites W1841411767 @default.
- W2893888003 cites W1885877572 @default.
- W2893888003 cites W1926527463 @default.
- W2893888003 cites W1947953001 @default.
- W2893888003 cites W1959297858 @default.
- W2893888003 cites W1967321328 @default.
- W2893888003 cites W1973156854 @default.
- W2893888003 cites W1979478270 @default.
- W2893888003 cites W1998551134 @default.
- W2893888003 cites W2000511093 @default.
- W2893888003 cites W2015831653 @default.
- W2893888003 cites W2026137829 @default.
- W2893888003 cites W2031188885 @default.
- W2893888003 cites W2031203992 @default.
- W2893888003 cites W2036888139 @default.
- W2893888003 cites W2045463582 @default.
- W2893888003 cites W2047169061 @default.
- W2893888003 cites W2049877836 @default.
- W2893888003 cites W2050575218 @default.
- W2893888003 cites W2056132907 @default.
- W2893888003 cites W2057442840 @default.
- W2893888003 cites W2061308627 @default.
- W2893888003 cites W2061330811 @default.
- W2893888003 cites W2065239005 @default.
- W2893888003 cites W2067114702 @default.
- W2893888003 cites W2073875868 @default.
- W2893888003 cites W2085230521 @default.
- W2893888003 cites W2088322276 @default.
- W2893888003 cites W2096818352 @default.
- W2893888003 cites W2098782137 @default.
- W2893888003 cites W2103694532 @default.
- W2893888003 cites W2106524373 @default.
- W2893888003 cites W2109269547 @default.
- W2893888003 cites W2111635155 @default.
- W2893888003 cites W2113985025 @default.
- W2893888003 cites W2114360694 @default.
- W2893888003 cites W2115341608 @default.
- W2893888003 cites W2117102138 @default.
- W2893888003 cites W2118898434 @default.
- W2893888003 cites W2128774436 @default.
- W2893888003 cites W2133505800 @default.
- W2893888003 cites W2137669790 @default.
- W2893888003 cites W2141726072 @default.
- W2893888003 cites W2148129885 @default.
- W2893888003 cites W2149185013 @default.
- W2893888003 cites W2152879441 @default.
- W2893888003 cites W2154754735 @default.
- W2893888003 cites W2161870519 @default.
- W2893888003 cites W2163056568 @default.
- W2893888003 cites W2169013634 @default.
- W2893888003 cites W2257455702 @default.
- W2893888003 cites W2298261490 @default.
- W2893888003 cites W2350284085 @default.
- W2893888003 cites W2460507874 @default.
- W2893888003 cites W2511507017 @default.
- W2893888003 cites W2546040478 @default.
- W2893888003 cites W2555090115 @default.
- W2893888003 cites W2587802550 @default.
- W2893888003 cites W2610932088 @default.
- W2893888003 cites W2732873697 @default.
- W2893888003 cites W2742135129 @default.
- W2893888003 cites W2793730491 @default.
- W2893888003 cites W2794477352 @default.
- W2893888003 cites W2911964244 @default.
- W2893888003 cites W4244056393 @default.
- W2893888003 cites W4253650269 @default.
- W2893888003 doi "https://doi.org/10.1177/0042098018789054" @default.
- W2893888003 hasPublicationYear "2018" @default.
- W2893888003 type Work @default.
- W2893888003 sameAs 2893888003 @default.
- W2893888003 citedByCount "60" @default.
- W2893888003 countsByYear W28938880032019 @default.
- W2893888003 countsByYear W28938880032020 @default.
- W2893888003 countsByYear W28938880032021 @default.
- W2893888003 countsByYear W28938880032022 @default.
- W2893888003 countsByYear W28938880032023 @default.
- W2893888003 crossrefType "journal-article" @default.
- W2893888003 hasAuthorship W2893888003A5026103274 @default.
- W2893888003 hasAuthorship W2893888003A5037632129 @default.
- W2893888003 hasAuthorship W2893888003A5062782933 @default.
- W2893888003 hasBestOaLocation W28938880032 @default.
- W2893888003 hasConcept C111472728 @default.
- W2893888003 hasConcept C120936955 @default.
- W2893888003 hasConcept C127413603 @default.
- W2893888003 hasConcept C134306372 @default.