Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893890790> ?p ?o ?g. }
- W2893890790 endingPage "147" @default.
- W2893890790 startingPage "132" @default.
- W2893890790 abstract "Remote mapping of bathymetry can play a key role in gaining spatial and temporal insight into fluvial processes, ranging from hydraulics and morphodynamics to habitat conditions. This research introduces Multiple Optimal Depth Predictors Analysis (MODPA), which combines previously developed depth predictors along with additional predictors derived from the intensity component of the HSI color space transformation. MODPA empirically selects a set of optimal predictors among all candidates utilizing partial least squares (PLS), stepwise, or principal component (PC) regression models. The primary focus of this study was on shallow (<1 m deep) and clearly flowing streams where substrate variability could have a pronounced effect on depth retrieval. Spectroscopic experiments were performed under controlled conditions in a hydraulic laboratory to examine the robustness of bathymetry models with respect to changes in bottom type. Further, simulations from radiative transfer modeling were used to extend the analysis by isolating the effect of inherent optical properties (IOPs) and by investigating the performance of bathymetry models in optically complex and deeper streams. The bathymetry of the Sarca River, a shallow river in the Italian Alps, was mapped using a WorldView-2 (WV-2) image, for which we evaluated the atmospheric compensation (AComp) product. Results indicated the greater robustness of multiple-predictor models particularly MODPA rather than single-predictor models, such as Optimal Band Ratio Analysis (OBRA), with respect to heterogeneity of bottom types, IOPs, and atmospheric effects. The HSI intensity component enhanced the accuracy of depth retrieval, particularly in optically-complex waters and also for low spectral resolution imagery (e.g., GeoEye). Further, the enhanced spectral resolution of WV-2 imagery improved bathymetry retrieval compared to 4-band GeoEye data." @default.
- W2893890790 created "2018-10-05" @default.
- W2893890790 creator A5048813568 @default.
- W2893890790 creator A5084700871 @default.
- W2893890790 creator A5091863749 @default.
- W2893890790 date "2018-12-01" @default.
- W2893890790 modified "2023-09-30" @default.
- W2893890790 title "Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry: Findings from spectroradiometry, simulations, and satellite imagery" @default.
- W2893890790 cites W1601607554 @default.
- W2893890790 cites W1773543203 @default.
- W2893890790 cites W1937979409 @default.
- W2893890790 cites W1969566724 @default.
- W2893890790 cites W1977904037 @default.
- W2893890790 cites W1978743543 @default.
- W2893890790 cites W1984570510 @default.
- W2893890790 cites W1988550211 @default.
- W2893890790 cites W1995421053 @default.
- W2893890790 cites W1997743396 @default.
- W2893890790 cites W1998627176 @default.
- W2893890790 cites W2000984972 @default.
- W2893890790 cites W2004804317 @default.
- W2893890790 cites W2009396719 @default.
- W2893890790 cites W2014123121 @default.
- W2893890790 cites W2017806383 @default.
- W2893890790 cites W2021873216 @default.
- W2893890790 cites W2031262609 @default.
- W2893890790 cites W2037401235 @default.
- W2893890790 cites W2038780961 @default.
- W2893890790 cites W2039824374 @default.
- W2893890790 cites W2042737933 @default.
- W2893890790 cites W2060552827 @default.
- W2893890790 cites W2068295856 @default.
- W2893890790 cites W2068990297 @default.
- W2893890790 cites W2070564279 @default.
- W2893890790 cites W2073503722 @default.
- W2893890790 cites W2076588916 @default.
- W2893890790 cites W2076739620 @default.
- W2893890790 cites W2083825310 @default.
- W2893890790 cites W2085565703 @default.
- W2893890790 cites W2092095701 @default.
- W2893890790 cites W2094745375 @default.
- W2893890790 cites W2105012295 @default.
- W2893890790 cites W2107301689 @default.
- W2893890790 cites W2108807256 @default.
- W2893890790 cites W2116939143 @default.
- W2893890790 cites W2123753389 @default.
- W2893890790 cites W2129986698 @default.
- W2893890790 cites W2131725398 @default.
- W2893890790 cites W2133342237 @default.
- W2893890790 cites W2135320474 @default.
- W2893890790 cites W2142454868 @default.
- W2893890790 cites W2142821935 @default.
- W2893890790 cites W2146093016 @default.
- W2893890790 cites W2146249434 @default.
- W2893890790 cites W2152686492 @default.
- W2893890790 cites W2168707907 @default.
- W2893890790 cites W2169939759 @default.
- W2893890790 cites W2171241984 @default.
- W2893890790 cites W2221873044 @default.
- W2893890790 cites W2335410469 @default.
- W2893890790 cites W2340393193 @default.
- W2893890790 cites W2529628027 @default.
- W2893890790 cites W2534604432 @default.
- W2893890790 cites W2580518305 @default.
- W2893890790 cites W2591774339 @default.
- W2893890790 cites W2743445409 @default.
- W2893890790 cites W2768391254 @default.
- W2893890790 cites W4251363244 @default.
- W2893890790 doi "https://doi.org/10.1016/j.rse.2018.09.022" @default.
- W2893890790 hasPublicationYear "2018" @default.
- W2893890790 type Work @default.
- W2893890790 sameAs 2893890790 @default.
- W2893890790 citedByCount "46" @default.
- W2893890790 countsByYear W28938907902019 @default.
- W2893890790 countsByYear W28938907902020 @default.
- W2893890790 countsByYear W28938907902021 @default.
- W2893890790 countsByYear W28938907902022 @default.
- W2893890790 countsByYear W28938907902023 @default.
- W2893890790 crossrefType "journal-article" @default.
- W2893890790 hasAuthorship W2893890790A5048813568 @default.
- W2893890790 hasAuthorship W2893890790A5084700871 @default.
- W2893890790 hasAuthorship W2893890790A5091863749 @default.
- W2893890790 hasBestOaLocation W28938907902 @default.
- W2893890790 hasConcept C104317684 @default.
- W2893890790 hasConcept C111368507 @default.
- W2893890790 hasConcept C114793014 @default.
- W2893890790 hasConcept C115051666 @default.
- W2893890790 hasConcept C127313418 @default.
- W2893890790 hasConcept C13280743 @default.
- W2893890790 hasConcept C154945302 @default.
- W2893890790 hasConcept C16156107 @default.
- W2893890790 hasConcept C174943157 @default.
- W2893890790 hasConcept C185592680 @default.
- W2893890790 hasConcept C27438332 @default.
- W2893890790 hasConcept C2778102629 @default.
- W2893890790 hasConcept C2816523 @default.
- W2893890790 hasConcept C39432304 @default.
- W2893890790 hasConcept C41008148 @default.