Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893898383> ?p ?o ?g. }
- W2893898383 endingPage "222" @default.
- W2893898383 startingPage "222" @default.
- W2893898383 abstract "In this paper, we have proposed a methodology for energy consumption prediction in residential buildings. The proposed method consists of four different layers, namely data acquisition, preprocessing, prediction, and performance evaluation. For experimental analysis, we have collected real data from four multi-storied residential building. The collected data are provided as input for the acquisition layer. In the pre-processing layer, several data cleaning and preprocessing schemes were deployed to remove abnormalities from the data. In the prediction layer, we have used the deep extreme learning machine (DELM) for energy consumption prediction. Further, we have also used the adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) in the prediction layer. In the DELM different numbers of hidden layers, different hidden neurons, and various types of activation functions have been used to achieve the optimal structure of DELM for energy consumption prediction. Similarly, in the ANN, we have employed a different combination of hidden neurons with different types of activation functions to get the optimal structure of ANN. To obtain the optimal structure of ANFIS, we have employed a different number and type of membership functions. In the performance evaluation layer for the comparative analysis of three prediction algorithms, we have used the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results indicate that the performance of DELM is far better than ANN and ANFIS for one-week and one-month hourly energy prediction on the given data." @default.
- W2893898383 created "2018-10-05" @default.
- W2893898383 creator A5004507358 @default.
- W2893898383 creator A5008406878 @default.
- W2893898383 date "2018-09-28" @default.
- W2893898383 modified "2023-10-16" @default.
- W2893898383 title "A Prediction Methodology of Energy Consumption Based on Deep Extreme Learning Machine and Comparative Analysis in Residential Buildings" @default.
- W2893898383 cites W1968510399 @default.
- W2893898383 cites W1978831934 @default.
- W2893898383 cites W1993717606 @default.
- W2893898383 cites W1999065216 @default.
- W2893898383 cites W2000065229 @default.
- W2893898383 cites W2003725769 @default.
- W2893898383 cites W2003802155 @default.
- W2893898383 cites W2007272376 @default.
- W2893898383 cites W2019207321 @default.
- W2893898383 cites W2031008166 @default.
- W2893898383 cites W2033435193 @default.
- W2893898383 cites W2033613435 @default.
- W2893898383 cites W2036785686 @default.
- W2893898383 cites W2051607409 @default.
- W2893898383 cites W2059328003 @default.
- W2893898383 cites W2060774500 @default.
- W2893898383 cites W2067576900 @default.
- W2893898383 cites W2076063813 @default.
- W2893898383 cites W2082739419 @default.
- W2893898383 cites W2091693228 @default.
- W2893898383 cites W2092998733 @default.
- W2893898383 cites W2100495367 @default.
- W2893898383 cites W2101674911 @default.
- W2893898383 cites W2111072639 @default.
- W2893898383 cites W2124941056 @default.
- W2893898383 cites W2161257182 @default.
- W2893898383 cites W2163121678 @default.
- W2893898383 cites W2163167422 @default.
- W2893898383 cites W2172147742 @default.
- W2893898383 cites W2180842350 @default.
- W2893898383 cites W2264139484 @default.
- W2893898383 cites W2290759223 @default.
- W2893898383 cites W2498017881 @default.
- W2893898383 cites W2595984151 @default.
- W2893898383 cites W2773244316 @default.
- W2893898383 cites W2783607550 @default.
- W2893898383 cites W2785428335 @default.
- W2893898383 cites W2797092231 @default.
- W2893898383 cites W2803612371 @default.
- W2893898383 cites W2921827055 @default.
- W2893898383 cites W361153027 @default.
- W2893898383 doi "https://doi.org/10.3390/electronics7100222" @default.
- W2893898383 hasPublicationYear "2018" @default.
- W2893898383 type Work @default.
- W2893898383 sameAs 2893898383 @default.
- W2893898383 citedByCount "77" @default.
- W2893898383 countsByYear W28938983832019 @default.
- W2893898383 countsByYear W28938983832020 @default.
- W2893898383 countsByYear W28938983832021 @default.
- W2893898383 countsByYear W28938983832022 @default.
- W2893898383 countsByYear W28938983832023 @default.
- W2893898383 crossrefType "journal-article" @default.
- W2893898383 hasAuthorship W2893898383A5004507358 @default.
- W2893898383 hasAuthorship W2893898383A5008406878 @default.
- W2893898383 hasBestOaLocation W28938983831 @default.
- W2893898383 hasConcept C10551718 @default.
- W2893898383 hasConcept C105795698 @default.
- W2893898383 hasConcept C119599485 @default.
- W2893898383 hasConcept C119857082 @default.
- W2893898383 hasConcept C124101348 @default.
- W2893898383 hasConcept C127413603 @default.
- W2893898383 hasConcept C139945424 @default.
- W2893898383 hasConcept C150217764 @default.
- W2893898383 hasConcept C154945302 @default.
- W2893898383 hasConcept C186108316 @default.
- W2893898383 hasConcept C186370098 @default.
- W2893898383 hasConcept C195975749 @default.
- W2893898383 hasConcept C2780150128 @default.
- W2893898383 hasConcept C2780165032 @default.
- W2893898383 hasConcept C33923547 @default.
- W2893898383 hasConcept C34736171 @default.
- W2893898383 hasConcept C41008148 @default.
- W2893898383 hasConcept C50644808 @default.
- W2893898383 hasConcept C58166 @default.
- W2893898383 hasConceptScore W2893898383C10551718 @default.
- W2893898383 hasConceptScore W2893898383C105795698 @default.
- W2893898383 hasConceptScore W2893898383C119599485 @default.
- W2893898383 hasConceptScore W2893898383C119857082 @default.
- W2893898383 hasConceptScore W2893898383C124101348 @default.
- W2893898383 hasConceptScore W2893898383C127413603 @default.
- W2893898383 hasConceptScore W2893898383C139945424 @default.
- W2893898383 hasConceptScore W2893898383C150217764 @default.
- W2893898383 hasConceptScore W2893898383C154945302 @default.
- W2893898383 hasConceptScore W2893898383C186108316 @default.
- W2893898383 hasConceptScore W2893898383C186370098 @default.
- W2893898383 hasConceptScore W2893898383C195975749 @default.
- W2893898383 hasConceptScore W2893898383C2780150128 @default.
- W2893898383 hasConceptScore W2893898383C2780165032 @default.
- W2893898383 hasConceptScore W2893898383C33923547 @default.
- W2893898383 hasConceptScore W2893898383C34736171 @default.
- W2893898383 hasConceptScore W2893898383C41008148 @default.