Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893905736> ?p ?o ?g. }
- W2893905736 endingPage "1342" @default.
- W2893905736 startingPage "1342" @default.
- W2893905736 abstract "Achieving low costs and high efficiency in wastewater treatment plants (WWTPs) is a common challenge in developing countries, although many optimizing tools on process design and operation have been well established. A data-driven optimal strategy without the prerequisite of expensive instruments and skilled engineers is thus attractive in practice. In this study, a data mining system was implemented to optimize the process design and operation in WWTPs in China, following an integral procedure including data collection and cleaning, data warehouse, data mining, and web user interface. A data warehouse was demonstrated and analyzed using one-year process data in 30 WWTPs in China. Six sludge removal loading rates on water quality indices, such as chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP), were calculated as derived parameters and organized into fact sheets. A searching algorithm was programmed to find out the five records most similar to the target scenario. A web interface was developed for users to input scenarios, view outputs, and update the database. Two case WWTPs were investigated to verify the data mining system. The results indicated that effluent quality of Case-1 WWTP was improved to meet the discharging criteria through optimal operations, and the process design of Case-2 WWTP could be refined in a feedback loop. A discussion on the gaps, potential, and challenges of data mining in practice was provided. The data mining system in this study is a good candidate for engineers to understand and control their processes in WWTPs." @default.
- W2893905736 created "2018-10-05" @default.
- W2893905736 creator A5006623989 @default.
- W2893905736 creator A5008526861 @default.
- W2893905736 creator A5034667944 @default.
- W2893905736 creator A5089118003 @default.
- W2893905736 date "2018-09-28" @default.
- W2893905736 modified "2023-10-15" @default.
- W2893905736 title "A Feasible Data-Driven Mining System to Optimize Wastewater Treatment Process Design and Operation" @default.
- W2893905736 cites W1587509334 @default.
- W2893905736 cites W1978887356 @default.
- W2893905736 cites W1987144561 @default.
- W2893905736 cites W1987415583 @default.
- W2893905736 cites W1998017863 @default.
- W2893905736 cites W2011737062 @default.
- W2893905736 cites W2014096921 @default.
- W2893905736 cites W2014242872 @default.
- W2893905736 cites W2020066883 @default.
- W2893905736 cites W2020913127 @default.
- W2893905736 cites W2023369697 @default.
- W2893905736 cites W2040622818 @default.
- W2893905736 cites W2059387397 @default.
- W2893905736 cites W2067956254 @default.
- W2893905736 cites W2089576423 @default.
- W2893905736 cites W2093584539 @default.
- W2893905736 cites W2099140223 @default.
- W2893905736 cites W2129513038 @default.
- W2893905736 cites W2142019992 @default.
- W2893905736 cites W2148076260 @default.
- W2893905736 cites W2152004941 @default.
- W2893905736 cites W2212491726 @default.
- W2893905736 cites W2271650014 @default.
- W2893905736 cites W2323408656 @default.
- W2893905736 cites W2339857033 @default.
- W2893905736 cites W2384939298 @default.
- W2893905736 cites W2399431026 @default.
- W2893905736 cites W2479755133 @default.
- W2893905736 cites W2523456799 @default.
- W2893905736 cites W2525609948 @default.
- W2893905736 cites W2563929255 @default.
- W2893905736 cites W2575875790 @default.
- W2893905736 cites W2735325458 @default.
- W2893905736 cites W2748258452 @default.
- W2893905736 cites W2752494435 @default.
- W2893905736 cites W2753413818 @default.
- W2893905736 cites W2756407031 @default.
- W2893905736 cites W2766739537 @default.
- W2893905736 cites W2771100845 @default.
- W2893905736 cites W2884616146 @default.
- W2893905736 doi "https://doi.org/10.3390/w10101342" @default.
- W2893905736 hasPublicationYear "2018" @default.
- W2893905736 type Work @default.
- W2893905736 sameAs 2893905736 @default.
- W2893905736 citedByCount "16" @default.
- W2893905736 countsByYear W28939057362018 @default.
- W2893905736 countsByYear W28939057362019 @default.
- W2893905736 countsByYear W28939057362020 @default.
- W2893905736 countsByYear W28939057362021 @default.
- W2893905736 countsByYear W28939057362022 @default.
- W2893905736 countsByYear W28939057362023 @default.
- W2893905736 crossrefType "journal-article" @default.
- W2893905736 hasAuthorship W2893905736A5006623989 @default.
- W2893905736 hasAuthorship W2893905736A5008526861 @default.
- W2893905736 hasAuthorship W2893905736A5034667944 @default.
- W2893905736 hasAuthorship W2893905736A5089118003 @default.
- W2893905736 hasBestOaLocation W28939057361 @default.
- W2893905736 hasConcept C105795698 @default.
- W2893905736 hasConcept C111919701 @default.
- W2893905736 hasConcept C113843644 @default.
- W2893905736 hasConcept C124101348 @default.
- W2893905736 hasConcept C127413603 @default.
- W2893905736 hasConcept C129307140 @default.
- W2893905736 hasConcept C133462117 @default.
- W2893905736 hasConcept C147455438 @default.
- W2893905736 hasConcept C157915830 @default.
- W2893905736 hasConcept C173608175 @default.
- W2893905736 hasConcept C176217482 @default.
- W2893905736 hasConcept C21547014 @default.
- W2893905736 hasConcept C24756922 @default.
- W2893905736 hasConcept C33923547 @default.
- W2893905736 hasConcept C41008148 @default.
- W2893905736 hasConcept C77088390 @default.
- W2893905736 hasConcept C87717796 @default.
- W2893905736 hasConcept C98045186 @default.
- W2893905736 hasConceptScore W2893905736C105795698 @default.
- W2893905736 hasConceptScore W2893905736C111919701 @default.
- W2893905736 hasConceptScore W2893905736C113843644 @default.
- W2893905736 hasConceptScore W2893905736C124101348 @default.
- W2893905736 hasConceptScore W2893905736C127413603 @default.
- W2893905736 hasConceptScore W2893905736C129307140 @default.
- W2893905736 hasConceptScore W2893905736C133462117 @default.
- W2893905736 hasConceptScore W2893905736C147455438 @default.
- W2893905736 hasConceptScore W2893905736C157915830 @default.
- W2893905736 hasConceptScore W2893905736C173608175 @default.
- W2893905736 hasConceptScore W2893905736C176217482 @default.
- W2893905736 hasConceptScore W2893905736C21547014 @default.
- W2893905736 hasConceptScore W2893905736C24756922 @default.
- W2893905736 hasConceptScore W2893905736C33923547 @default.