Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893909150> ?p ?o ?g. }
- W2893909150 endingPage "134" @default.
- W2893909150 startingPage "111" @default.
- W2893909150 abstract "Abstract Glacigenic perialpine lakes can constitute continuous post-last glacial maximum (LGM) geological archives which allow reconstruction of both lake-specific sedimentological processes and the paleoenvironmental setting of lakes. Lake Mondsee is one among several perialpine lakes in the Salzkammergut, Upper Austria, and has been previously studied in terms of paleoclimate, paleolimnology and (paleo)ecology. However, the full extent and environment of Late Glacial to Holocene sediment deposition had remained unknown, and it was not clear whether previously studied core sections were fully representative of 3D sediment accumulation patterns. In this study, the sedimentary infill of Lake Mondsee was examined via high-resolution seismic reflection survey over a 57-km extent (3.5 kHz pinger source) and a sediment core extracted from the deepest part of the lake, with a continuous length of 13.76 m. In the northern basin, seismic penetration is strongly limited in most areas because of abundant shallow gas (causing acoustic blanking). In the deeper areas, the acoustic signal reaches depths of up to 80 ms TWT (two-way travel time), representing a postglacial sedimentary sequence of at least 60-m thickness. Holocene deposits constitute only the uppermost 11.5 m of the sedimentary succession. Postglacial seismic stratigraphy of Lake Mondsee closely resembles those of well-studied French and Swiss perialpine lakes, with our data showing that most of Lake Mondsee’s sedimentary basin infill was deposited within a short time period (between 19,000 BP and 14,500 BP) after the Traun Glacier retreated from the Mondsee area, indicating an average sedimentation rate of about 1.4 cm/yr. Compared to other perialpine lakes, the seismic data from Lake Mondsee reveal little indication of mass movement activities during the Holocene. One exception, however, is rockfalls that originate from a steep cliff, the Kienbergwand, situated on the southern shore of Lake Mondsee, where, in the adjacent part of the lake, seismic profiles show mass transport deposits (MTDs), which extend approximately 450 m from the shore and are mappable over an area of about 45,300 m 2 . Sediment cores targeting the MTDs show two separate rockfall events. The older event consists of clast-supported angular dolomitic gravels and sands, showing high amounts of fine fraction. The younger event exhibits dolomitic clasts of up to 1.5 cm in diameter, which is mixed within a lacustrine muddy matrix. Radiocarbon dating and correlations with varve-dated sediment cores hint at respective ages of AD 1484 ± 7 for Event 1 and AD 1639 ± 5 for Event 2. As our data show no evidence of larger-scale mass movements affecting Lake Mondsee and its surroundings, we infer that the current-day morphology of the Kienbergwand is the result of infrequent medium-scale rockfalls." @default.
- W2893909150 created "2018-10-05" @default.
- W2893909150 creator A5033635971 @default.
- W2893909150 creator A5033709836 @default.
- W2893909150 creator A5044741778 @default.
- W2893909150 creator A5048309079 @default.
- W2893909150 creator A5061933718 @default.
- W2893909150 date "2018-09-01" @default.
- W2893909150 modified "2023-09-27" @default.
- W2893909150 title "Late Glacial and Holocene sedimentary infill of Lake Mondsee (Eastern Alps, Austria) and historical rockfall activity revealed by reflection seismics and sediment core analysis" @default.
- W2893909150 cites W1514283370 @default.
- W2893909150 cites W1535487318 @default.
- W2893909150 cites W1590589436 @default.
- W2893909150 cites W1607674488 @default.
- W2893909150 cites W1919647054 @default.
- W2893909150 cites W1941158494 @default.
- W2893909150 cites W1967094786 @default.
- W2893909150 cites W1967945399 @default.
- W2893909150 cites W1972588956 @default.
- W2893909150 cites W1978156774 @default.
- W2893909150 cites W1979684077 @default.
- W2893909150 cites W1979762482 @default.
- W2893909150 cites W1982764603 @default.
- W2893909150 cites W1991352852 @default.
- W2893909150 cites W1996862213 @default.
- W2893909150 cites W1997385647 @default.
- W2893909150 cites W2007520708 @default.
- W2893909150 cites W2016091494 @default.
- W2893909150 cites W2019879190 @default.
- W2893909150 cites W2031716369 @default.
- W2893909150 cites W2038446075 @default.
- W2893909150 cites W2044146224 @default.
- W2893909150 cites W2044330775 @default.
- W2893909150 cites W2044841643 @default.
- W2893909150 cites W2050857897 @default.
- W2893909150 cites W2058659553 @default.
- W2893909150 cites W2061756144 @default.
- W2893909150 cites W2073175105 @default.
- W2893909150 cites W2075275935 @default.
- W2893909150 cites W2084619833 @default.
- W2893909150 cites W2087125749 @default.
- W2893909150 cites W2089718646 @default.
- W2893909150 cites W2090671389 @default.
- W2893909150 cites W2094071283 @default.
- W2893909150 cites W2108769762 @default.
- W2893909150 cites W2119578256 @default.
- W2893909150 cites W2130695190 @default.
- W2893909150 cites W2136246993 @default.
- W2893909150 cites W2140191695 @default.
- W2893909150 cites W2147076001 @default.
- W2893909150 cites W2159973689 @default.
- W2893909150 cites W2163464784 @default.
- W2893909150 cites W2169031932 @default.
- W2893909150 cites W2178286370 @default.
- W2893909150 cites W2305288899 @default.
- W2893909150 cites W2318310808 @default.
- W2893909150 cites W2598689081 @default.
- W2893909150 cites W2612551287 @default.
- W2893909150 cites W2747563214 @default.
- W2893909150 cites W4240608925 @default.
- W2893909150 cites W4249751050 @default.
- W2893909150 cites W4250067278 @default.
- W2893909150 cites W4256144090 @default.
- W2893909150 doi "https://doi.org/10.17738/ajes.2018.0008" @default.
- W2893909150 hasPublicationYear "2018" @default.
- W2893909150 type Work @default.
- W2893909150 sameAs 2893909150 @default.
- W2893909150 citedByCount "6" @default.
- W2893909150 countsByYear W28939091502019 @default.
- W2893909150 countsByYear W28939091502020 @default.
- W2893909150 countsByYear W28939091502021 @default.
- W2893909150 countsByYear W28939091502022 @default.
- W2893909150 crossrefType "journal-article" @default.
- W2893909150 hasAuthorship W2893909150A5033635971 @default.
- W2893909150 hasAuthorship W2893909150A5033709836 @default.
- W2893909150 hasAuthorship W2893909150A5044741778 @default.
- W2893909150 hasAuthorship W2893909150A5048309079 @default.
- W2893909150 hasAuthorship W2893909150A5061933718 @default.
- W2893909150 hasBestOaLocation W28939091501 @default.
- W2893909150 hasConcept C109007969 @default.
- W2893909150 hasConcept C114793014 @default.
- W2893909150 hasConcept C126753816 @default.
- W2893909150 hasConcept C127313418 @default.
- W2893909150 hasConcept C140345934 @default.
- W2893909150 hasConcept C151730666 @default.
- W2893909150 hasConcept C15739521 @default.
- W2893909150 hasConcept C188291805 @default.
- W2893909150 hasConcept C18903297 @default.
- W2893909150 hasConcept C26099304 @default.
- W2893909150 hasConcept C2781219549 @default.
- W2893909150 hasConcept C2816523 @default.
- W2893909150 hasConcept C6494504 @default.
- W2893909150 hasConcept C86803240 @default.
- W2893909150 hasConceptScore W2893909150C109007969 @default.
- W2893909150 hasConceptScore W2893909150C114793014 @default.
- W2893909150 hasConceptScore W2893909150C126753816 @default.
- W2893909150 hasConceptScore W2893909150C127313418 @default.
- W2893909150 hasConceptScore W2893909150C140345934 @default.