Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893913719> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2893913719 abstract "Temperature prediction in complex systems like gas turbines provides insights to temperature dependent damage accumulation but usually involves a huge computational cost. For simulation-based prognostics, the computational cost is a major hindrance to a real time implementation. In this work an ensemble learning based multistage surrogate modeling approach is investigated as a possible solution for reducing the computational cost. First the nodal temperature of a turbine blisk is predicted using computational fluid dynamic (CFD) simulations for a limited number of engine operating points. Next the proposed ensemble learning based surrogate modeling approach is implemented to train surrogate models for every node defining the blisk. To achieve computational efficiency, the proposed surrogate modeling framework implements in sequence, clustering techniques for data analysis, multistage polynomial regression modeling, and ensemble learning based model combination. Finally the prediction errors are quantified using the leave-one-out cross-validation method. The result suggests that the computational time could be significantly reduced using the proposed ensemble learning based multistage surrogate modeling technique. The threshold value used to tune the polynomial regression model complexity is also shown to influence the time for surrogate model training." @default.
- W2893913719 created "2018-10-05" @default.
- W2893913719 creator A5071196859 @default.
- W2893913719 creator A5084773945 @default.
- W2893913719 creator A5088903608 @default.
- W2893913719 date "2018-09-24" @default.
- W2893913719 modified "2023-09-23" @default.
- W2893913719 title "Ensemble Learning Based Surrogate Modeling for Gas Turbine Blisk Temperature Predictions" @default.
- W2893913719 cites W2000809088 @default.
- W2893913719 cites W2023716348 @default.
- W2893913719 cites W2048711666 @default.
- W2893913719 cites W2050297026 @default.
- W2893913719 cites W2055772055 @default.
- W2893913719 cites W2057772398 @default.
- W2893913719 cites W2071204941 @default.
- W2893913719 cites W2073815016 @default.
- W2893913719 cites W2075665712 @default.
- W2893913719 cites W2079166250 @default.
- W2893913719 cites W2081709852 @default.
- W2893913719 cites W2088990166 @default.
- W2893913719 cites W2105782540 @default.
- W2893913719 cites W2112076978 @default.
- W2893913719 cites W2145475762 @default.
- W2893913719 cites W2164094775 @default.
- W2893913719 cites W2330322390 @default.
- W2893913719 cites W2749427868 @default.
- W2893913719 cites W2912934387 @default.
- W2893913719 cites W2914369697 @default.
- W2893913719 doi "https://doi.org/10.36001/phmconf.2018.v10i1.495" @default.
- W2893913719 hasPublicationYear "2018" @default.
- W2893913719 type Work @default.
- W2893913719 sameAs 2893913719 @default.
- W2893913719 citedByCount "0" @default.
- W2893913719 crossrefType "journal-article" @default.
- W2893913719 hasAuthorship W2893913719A5071196859 @default.
- W2893913719 hasAuthorship W2893913719A5084773945 @default.
- W2893913719 hasAuthorship W2893913719A5088903608 @default.
- W2893913719 hasBestOaLocation W28939137191 @default.
- W2893913719 hasConcept C11413529 @default.
- W2893913719 hasConcept C119857082 @default.
- W2893913719 hasConcept C127413603 @default.
- W2893913719 hasConcept C131675550 @default.
- W2893913719 hasConcept C146978453 @default.
- W2893913719 hasConcept C154945302 @default.
- W2893913719 hasConcept C1633027 @default.
- W2893913719 hasConcept C179799912 @default.
- W2893913719 hasConcept C41008148 @default.
- W2893913719 hasConcept C45942800 @default.
- W2893913719 hasConceptScore W2893913719C11413529 @default.
- W2893913719 hasConceptScore W2893913719C119857082 @default.
- W2893913719 hasConceptScore W2893913719C127413603 @default.
- W2893913719 hasConceptScore W2893913719C131675550 @default.
- W2893913719 hasConceptScore W2893913719C146978453 @default.
- W2893913719 hasConceptScore W2893913719C154945302 @default.
- W2893913719 hasConceptScore W2893913719C1633027 @default.
- W2893913719 hasConceptScore W2893913719C179799912 @default.
- W2893913719 hasConceptScore W2893913719C41008148 @default.
- W2893913719 hasConceptScore W2893913719C45942800 @default.
- W2893913719 hasLocation W28939137191 @default.
- W2893913719 hasOpenAccess W2893913719 @default.
- W2893913719 hasPrimaryLocation W28939137191 @default.
- W2893913719 hasRelatedWork W2253923269 @default.
- W2893913719 hasRelatedWork W3013699712 @default.
- W2893913719 hasRelatedWork W3124943098 @default.
- W2893913719 hasRelatedWork W3149839747 @default.
- W2893913719 hasRelatedWork W3162132941 @default.
- W2893913719 hasRelatedWork W3207544517 @default.
- W2893913719 hasRelatedWork W3211971560 @default.
- W2893913719 hasRelatedWork W4225307033 @default.
- W2893913719 hasRelatedWork W4281560664 @default.
- W2893913719 hasRelatedWork W4285741730 @default.
- W2893913719 isParatext "false" @default.
- W2893913719 isRetracted "false" @default.
- W2893913719 magId "2893913719" @default.
- W2893913719 workType "article" @default.