Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893940167> ?p ?o ?g. }
- W2893940167 endingPage "91" @default.
- W2893940167 startingPage "78" @default.
- W2893940167 abstract "Potential relation detecting on social network has become more important for decision making in many business disciplines, such as marketing, business strategy, human resources development, finance planning, business transformation, insurance policy design, and tourism management. People are used to seeking useful information from the relationships among social members to support their decisions on investment, partner seeking and marketing. Corporations are seeking opportunities to leverage them for “word of mouth” advertising based on the relations between the customers. When we collect and observe relationships between people, missing or redundant relations unavoidably occur since the time and cost restrictions in market or social investigation prevent us to discover all the relations. Moreover, since the social relations are changing constantly, current social relations may disappear, and new relations will be established. Many trade and social networks consist of multiple types of relations between the individuals. This paper presents an efficient method to detect the potential and future social relations between individuals in multi-relational social networks using link prediction. First, we calculate the belief of each individual by belief propagation on each type of relations. Based on the belief vectors, the similarities between various types of relations are computed to measure their mutual influence. Based on the similarities between various types of relations, we model link prediction as the problem of matrix completion by optimizing its max-norm constrained formulation. We propose a projected gradient descent optimization algorithm which is scalable to large size networks. Empirical results on real multi-relational social networks demonstrate that the predicting results of our algorithm have higher quality compared with other similar algorithms." @default.
- W2893940167 created "2018-10-05" @default.
- W2893940167 creator A5005858119 @default.
- W2893940167 creator A5019997667 @default.
- W2893940167 creator A5029695887 @default.
- W2893940167 creator A5057762207 @default.
- W2893940167 creator A5071037763 @default.
- W2893940167 date "2018-11-01" @default.
- W2893940167 modified "2023-10-14" @default.
- W2893940167 title "Detect potential relations by link prediction in multi-relational social networks" @default.
- W2893940167 cites W161082939 @default.
- W2893940167 cites W1969811075 @default.
- W2893940167 cites W1970240724 @default.
- W2893940167 cites W1980852313 @default.
- W2893940167 cites W1994796397 @default.
- W2893940167 cites W1996461233 @default.
- W2893940167 cites W1997733761 @default.
- W2893940167 cites W2017222387 @default.
- W2893940167 cites W2020419083 @default.
- W2893940167 cites W2022580894 @default.
- W2893940167 cites W2027637144 @default.
- W2893940167 cites W2031063730 @default.
- W2893940167 cites W2044935600 @default.
- W2893940167 cites W2047525190 @default.
- W2893940167 cites W2060594535 @default.
- W2893940167 cites W2071102389 @default.
- W2893940167 cites W2086643053 @default.
- W2893940167 cites W2096299529 @default.
- W2893940167 cites W2109469951 @default.
- W2893940167 cites W2124532072 @default.
- W2893940167 cites W2129110357 @default.
- W2893940167 cites W2137180616 @default.
- W2893940167 cites W2148060162 @default.
- W2893940167 cites W2161795696 @default.
- W2893940167 cites W2165320068 @default.
- W2893940167 cites W2186071116 @default.
- W2893940167 cites W2208595703 @default.
- W2893940167 cites W2322192098 @default.
- W2893940167 cites W2409447785 @default.
- W2893940167 cites W2474439552 @default.
- W2893940167 cites W2490976439 @default.
- W2893940167 cites W2580175752 @default.
- W2893940167 cites W2586233753 @default.
- W2893940167 cites W2735352870 @default.
- W2893940167 cites W2762460055 @default.
- W2893940167 cites W2784280741 @default.
- W2893940167 cites W2789728367 @default.
- W2893940167 cites W2792794664 @default.
- W2893940167 cites W2885860981 @default.
- W2893940167 cites W326443074 @default.
- W2893940167 cites W972421309 @default.
- W2893940167 doi "https://doi.org/10.1016/j.dss.2018.09.006" @default.
- W2893940167 hasPublicationYear "2018" @default.
- W2893940167 type Work @default.
- W2893940167 sameAs 2893940167 @default.
- W2893940167 citedByCount "10" @default.
- W2893940167 countsByYear W28939401672020 @default.
- W2893940167 countsByYear W28939401672021 @default.
- W2893940167 countsByYear W28939401672022 @default.
- W2893940167 countsByYear W28939401672023 @default.
- W2893940167 crossrefType "journal-article" @default.
- W2893940167 hasAuthorship W2893940167A5005858119 @default.
- W2893940167 hasAuthorship W2893940167A5019997667 @default.
- W2893940167 hasAuthorship W2893940167A5029695887 @default.
- W2893940167 hasAuthorship W2893940167A5057762207 @default.
- W2893940167 hasAuthorship W2893940167A5071037763 @default.
- W2893940167 hasConcept C105795698 @default.
- W2893940167 hasConcept C120936955 @default.
- W2893940167 hasConcept C130064352 @default.
- W2893940167 hasConcept C136764020 @default.
- W2893940167 hasConcept C153083717 @default.
- W2893940167 hasConcept C154945302 @default.
- W2893940167 hasConcept C15744967 @default.
- W2893940167 hasConcept C2522767166 @default.
- W2893940167 hasConcept C33923547 @default.
- W2893940167 hasConcept C41008148 @default.
- W2893940167 hasConcept C4727928 @default.
- W2893940167 hasConcept C518677369 @default.
- W2893940167 hasConcept C56739046 @default.
- W2893940167 hasConcept C77805123 @default.
- W2893940167 hasConceptScore W2893940167C105795698 @default.
- W2893940167 hasConceptScore W2893940167C120936955 @default.
- W2893940167 hasConceptScore W2893940167C130064352 @default.
- W2893940167 hasConceptScore W2893940167C136764020 @default.
- W2893940167 hasConceptScore W2893940167C153083717 @default.
- W2893940167 hasConceptScore W2893940167C154945302 @default.
- W2893940167 hasConceptScore W2893940167C15744967 @default.
- W2893940167 hasConceptScore W2893940167C2522767166 @default.
- W2893940167 hasConceptScore W2893940167C33923547 @default.
- W2893940167 hasConceptScore W2893940167C41008148 @default.
- W2893940167 hasConceptScore W2893940167C4727928 @default.
- W2893940167 hasConceptScore W2893940167C518677369 @default.
- W2893940167 hasConceptScore W2893940167C56739046 @default.
- W2893940167 hasConceptScore W2893940167C77805123 @default.
- W2893940167 hasFunder F4320321001 @default.
- W2893940167 hasFunder F4320322769 @default.
- W2893940167 hasFunder F4320326182 @default.
- W2893940167 hasLocation W28939401671 @default.