Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893962022> ?p ?o ?g. }
- W2893962022 endingPage "203" @default.
- W2893962022 startingPage "197" @default.
- W2893962022 abstract "Dosage of chemotherapeutic drugs is a tradeoff between efficacy and side-effects. Liposomes are nanocarriers that increase therapy efficacy and minimize side-effects by delivering otherwise difficult to administer therapeutics with improved efficiency and selectivity. Still, variabilities in liposome preparation require assessing drug encapsulation efficiency at the single liposome level, an information that, for non-fluorescent therapeutic cargos, is inaccessible due to the minute drug load per liposome. Photothermal induced resonance (PTIR) provides nanoscale compositional specificity, up to now, by leveraging an atomic force microscope (AFM) tip contacting the sample to transduce the sample's photothermal expansion. However, on soft samples (e.g. liposomes) PTIR effectiveness is reduced due to the likelihood of tip-induced sample damage and inefficient AFM transduction. Here, individual liposomes loaded with the chemotherapeutic drug cytarabine are deposited intact from suspension via nES-GEMMA (nano-electrospray gas-phase electrophoretic mobility molecular analysis) collection and characterized at the nanoscale with the chemically-sensitive PTIR method. A new tapping-mode PTIR imaging paradigm based on heterodyne detection is shown to be better adapted to measure soft samples, yielding cytarabine distribution in individual liposomes and enabling classification of empty and drug-loaded liposomes. The measurements highlight PTIR capability to detect ≈ 103 cytarabine molecules (≈ 1.7 zmol) label-free and non-destructively." @default.
- W2893962022 created "2018-10-05" @default.
- W2893962022 creator A5020605946 @default.
- W2893962022 creator A5043142398 @default.
- W2893962022 creator A5064303227 @default.
- W2893962022 creator A5066619232 @default.
- W2893962022 creator A5071798287 @default.
- W2893962022 creator A5074240978 @default.
- W2893962022 date "2018-09-27" @default.
- W2893962022 modified "2023-10-18" @default.
- W2893962022 title "Nanoscale chemical imaging of individual chemotherapeutic cytarabine-loaded liposomal nanocarriers" @default.
- W2893962022 cites W1590317649 @default.
- W2893962022 cites W1924889590 @default.
- W2893962022 cites W1955295757 @default.
- W2893962022 cites W1963675633 @default.
- W2893962022 cites W1966985858 @default.
- W2893962022 cites W1978094989 @default.
- W2893962022 cites W1981969726 @default.
- W2893962022 cites W1981999046 @default.
- W2893962022 cites W1986468641 @default.
- W2893962022 cites W1989184602 @default.
- W2893962022 cites W1990450973 @default.
- W2893962022 cites W1998670932 @default.
- W2893962022 cites W2003694162 @default.
- W2893962022 cites W2004109893 @default.
- W2893962022 cites W2009967254 @default.
- W2893962022 cites W2011959848 @default.
- W2893962022 cites W2018034259 @default.
- W2893962022 cites W2021713080 @default.
- W2893962022 cites W2029135196 @default.
- W2893962022 cites W2031850930 @default.
- W2893962022 cites W2032760352 @default.
- W2893962022 cites W2039559661 @default.
- W2893962022 cites W2051925512 @default.
- W2893962022 cites W2056917459 @default.
- W2893962022 cites W2059622316 @default.
- W2893962022 cites W2060855088 @default.
- W2893962022 cites W2061510929 @default.
- W2893962022 cites W2062244716 @default.
- W2893962022 cites W2072131485 @default.
- W2893962022 cites W2076226743 @default.
- W2893962022 cites W2080202676 @default.
- W2893962022 cites W2081142858 @default.
- W2893962022 cites W2082093933 @default.
- W2893962022 cites W2089417464 @default.
- W2893962022 cites W2090709762 @default.
- W2893962022 cites W2101044126 @default.
- W2893962022 cites W2106217411 @default.
- W2893962022 cites W2110443462 @default.
- W2893962022 cites W2136502605 @default.
- W2893962022 cites W2149857933 @default.
- W2893962022 cites W2151198402 @default.
- W2893962022 cites W2159736913 @default.
- W2893962022 cites W2160495912 @default.
- W2893962022 cites W2166458266 @default.
- W2893962022 cites W2168807202 @default.
- W2893962022 cites W2170315635 @default.
- W2893962022 cites W2187976253 @default.
- W2893962022 cites W2196340795 @default.
- W2893962022 cites W2209646056 @default.
- W2893962022 cites W2220577367 @default.
- W2893962022 cites W2292638368 @default.
- W2893962022 cites W2297492093 @default.
- W2893962022 cites W2315560426 @default.
- W2893962022 cites W2322326751 @default.
- W2893962022 cites W2397562985 @default.
- W2893962022 cites W2463676359 @default.
- W2893962022 cites W248692593 @default.
- W2893962022 cites W2493190148 @default.
- W2893962022 cites W2519042196 @default.
- W2893962022 cites W2550933405 @default.
- W2893962022 cites W2561531429 @default.
- W2893962022 cites W2586819972 @default.
- W2893962022 cites W2594587115 @default.
- W2893962022 cites W2599276599 @default.
- W2893962022 cites W2604386694 @default.
- W2893962022 cites W2606878696 @default.
- W2893962022 cites W2732108353 @default.
- W2893962022 cites W2740509235 @default.
- W2893962022 cites W2740962072 @default.
- W2893962022 cites W2742699304 @default.
- W2893962022 cites W2762379956 @default.
- W2893962022 cites W2767181921 @default.
- W2893962022 cites W2770296655 @default.
- W2893962022 cites W2777260401 @default.
- W2893962022 cites W2783360784 @default.
- W2893962022 cites W2790415970 @default.
- W2893962022 cites W2793986678 @default.
- W2893962022 cites W2807410315 @default.
- W2893962022 cites W2807569347 @default.
- W2893962022 cites W2808810044 @default.
- W2893962022 doi "https://doi.org/10.1007/s12274-018-2202-x" @default.
- W2893962022 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6604632" @default.
- W2893962022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31275527" @default.
- W2893962022 hasPublicationYear "2018" @default.
- W2893962022 type Work @default.
- W2893962022 sameAs 2893962022 @default.
- W2893962022 citedByCount "58" @default.