Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893982142> ?p ?o ?g. }
- W2893982142 abstract "There is a need for comprehensive evaluations of the underlying local factors that contribute to residual malaria in sub-Saharan Africa. However, it is difficult to compare the wide array of demographic, socio-economic, and environmental variables associated with malaria transmission using standard statistical approaches while accounting for seasonal differences and nonlinear relationships. This article uses a Bayesian model averaging (BMA) approach for identifying and comparing potential risk and protective factors associated with residual malaria. The relative influence of a comprehensive set of demographic, socio-economic, environmental, and malaria intervention variables on malaria prevalence were modelled using BMA for variable selection. Data were collected in Bunkpurugu-Yunyoo, a rural district in northeast Ghana that experiences holoendemic seasonal malaria transmission, over six biannual surveys from 2010 to 2013. A total of 10,022 children between the ages 6 to 59 months were used in the analysis. Multiple models were developed to identify important risk and protective factors, accounting for seasonal patterns and nonlinear relationships. These models revealed pronounced nonlinear associations between malaria risk and distance from the nearest urban centre and health facility. Furthermore, the association between malaria risk and age and some ethnic groups was significantly different in the rainy and dry seasons. BMA outperformed other commonly used regression approaches in out-of-sample predictive ability using a season-to-season validation approach. This modelling framework offers an alternative approach to disease risk factor analysis that generates interpretable models, can reveal complex, nonlinear relationships, incorporates uncertainty in model selection, and produces accurate predictions. Certain modelling applications, such as designing targeted local interventions, require more sophisticated statistical methods which are capable of handling a wide range of relevant data while maintaining interpretability and predictive performance, and directly characterize uncertainty. To this end, BMA represents a valuable tool for constructing more informative models for understanding risk factors for malaria, as well as other vector-borne and environmentally mediated diseases." @default.
- W2893982142 created "2018-10-05" @default.
- W2893982142 creator A5004594547 @default.
- W2893982142 creator A5037816596 @default.
- W2893982142 creator A5058148193 @default.
- W2893982142 creator A5058459891 @default.
- W2893982142 creator A5073552200 @default.
- W2893982142 creator A5087226250 @default.
- W2893982142 creator A5088618588 @default.
- W2893982142 creator A5091659739 @default.
- W2893982142 date "2018-09-29" @default.
- W2893982142 modified "2023-10-15" @default.
- W2893982142 title "Detecting local risk factors for residual malaria in northern Ghana using Bayesian model averaging" @default.
- W2893982142 cites W1483232094 @default.
- W2893982142 cites W1603903339 @default.
- W2893982142 cites W1681327881 @default.
- W2893982142 cites W1729017034 @default.
- W2893982142 cites W1976365540 @default.
- W2893982142 cites W1977690839 @default.
- W2893982142 cites W1999487590 @default.
- W2893982142 cites W2003465484 @default.
- W2893982142 cites W2006120208 @default.
- W2893982142 cites W2013765062 @default.
- W2893982142 cites W2019448011 @default.
- W2893982142 cites W2024780423 @default.
- W2893982142 cites W2026064499 @default.
- W2893982142 cites W2028626843 @default.
- W2893982142 cites W2029229188 @default.
- W2893982142 cites W2029872308 @default.
- W2893982142 cites W2032407294 @default.
- W2893982142 cites W2032712630 @default.
- W2893982142 cites W2034714263 @default.
- W2893982142 cites W2038168839 @default.
- W2893982142 cites W2044206944 @default.
- W2893982142 cites W2048776980 @default.
- W2893982142 cites W2049122105 @default.
- W2893982142 cites W2049228615 @default.
- W2893982142 cites W2065707860 @default.
- W2893982142 cites W2080289099 @default.
- W2893982142 cites W2083927895 @default.
- W2893982142 cites W2088758477 @default.
- W2893982142 cites W2095554063 @default.
- W2893982142 cites W2096686114 @default.
- W2893982142 cites W2098058857 @default.
- W2893982142 cites W2101846955 @default.
- W2893982142 cites W2102160343 @default.
- W2893982142 cites W2106706098 @default.
- W2893982142 cites W2110968330 @default.
- W2893982142 cites W2112775837 @default.
- W2893982142 cites W2112776483 @default.
- W2893982142 cites W2120623592 @default.
- W2893982142 cites W2121394390 @default.
- W2893982142 cites W2122865751 @default.
- W2893982142 cites W2124447561 @default.
- W2893982142 cites W2130103146 @default.
- W2893982142 cites W2133057125 @default.
- W2893982142 cites W2134603694 @default.
- W2893982142 cites W2135490630 @default.
- W2893982142 cites W2136037924 @default.
- W2893982142 cites W2137068738 @default.
- W2893982142 cites W2139198479 @default.
- W2893982142 cites W2141294688 @default.
- W2893982142 cites W2142354606 @default.
- W2893982142 cites W2143500192 @default.
- W2893982142 cites W2143971996 @default.
- W2893982142 cites W2146683831 @default.
- W2893982142 cites W2152230231 @default.
- W2893982142 cites W2152400766 @default.
- W2893982142 cites W2156213211 @default.
- W2893982142 cites W2158840489 @default.
- W2893982142 cites W2161933266 @default.
- W2893982142 cites W2164632233 @default.
- W2893982142 cites W2165786903 @default.
- W2893982142 cites W2167702287 @default.
- W2893982142 cites W2172185584 @default.
- W2893982142 cites W2176683074 @default.
- W2893982142 cites W2238002468 @default.
- W2893982142 cites W2293085426 @default.
- W2893982142 cites W2468543893 @default.
- W2893982142 cites W2532581450 @default.
- W2893982142 cites W2566224772 @default.
- W2893982142 cites W2742726443 @default.
- W2893982142 cites W4244820684 @default.
- W2893982142 cites W4249678469 @default.
- W2893982142 doi "https://doi.org/10.1186/s12936-018-2491-2" @default.
- W2893982142 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6162921" @default.
- W2893982142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30268127" @default.
- W2893982142 hasPublicationYear "2018" @default.
- W2893982142 type Work @default.
- W2893982142 sameAs 2893982142 @default.
- W2893982142 citedByCount "20" @default.
- W2893982142 countsByYear W28939821422019 @default.
- W2893982142 countsByYear W28939821422020 @default.
- W2893982142 countsByYear W28939821422021 @default.
- W2893982142 countsByYear W28939821422022 @default.
- W2893982142 countsByYear W28939821422023 @default.
- W2893982142 crossrefType "journal-article" @default.
- W2893982142 hasAuthorship W2893982142A5004594547 @default.
- W2893982142 hasAuthorship W2893982142A5037816596 @default.
- W2893982142 hasAuthorship W2893982142A5058148193 @default.