Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894006709> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2894006709 endingPage "170" @default.
- W2894006709 startingPage "159" @default.
- W2894006709 abstract "Intrusion detection system plays an important role in ensuring information security, and the key technology is to accurately identify various attacks in the network. Due to huge increase in network traffic and different types of attacks, accurately classifying the malicious and legitimate network traffic is time consuming and computational intensive. Recently, more and more researchers applied deep neural networks (DNNs) to solve intrusion detection problems. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), the two main types of DNN architectures, are widely explored to enhance the performance of intrusion detection system. In this paper, we made a systematic comparison of CNN and RNN on the deep learning based intrusion detection systems, aiming to give basic guidance for DNN selection." @default.
- W2894006709 created "2018-10-05" @default.
- W2894006709 creator A5001749693 @default.
- W2894006709 creator A5030617408 @default.
- W2894006709 creator A5038180826 @default.
- W2894006709 creator A5057329072 @default.
- W2894006709 creator A5065180456 @default.
- W2894006709 date "2018-01-01" @default.
- W2894006709 modified "2023-10-18" @default.
- W2894006709 title "Comparative Study of CNN and RNN for Deep Learning Based Intrusion Detection System" @default.
- W2894006709 cites W2031163547 @default.
- W2894006709 cites W2064675550 @default.
- W2894006709 cites W2066877142 @default.
- W2894006709 cites W2097117768 @default.
- W2894006709 cites W2110485445 @default.
- W2894006709 cites W2112796928 @default.
- W2894006709 cites W2149600645 @default.
- W2894006709 cites W2528827134 @default.
- W2894006709 cites W2625013748 @default.
- W2894006709 cites W2762776925 @default.
- W2894006709 cites W2774769449 @default.
- W2894006709 cites W2964199361 @default.
- W2894006709 doi "https://doi.org/10.1007/978-3-030-00018-9_15" @default.
- W2894006709 hasPublicationYear "2018" @default.
- W2894006709 type Work @default.
- W2894006709 sameAs 2894006709 @default.
- W2894006709 citedByCount "27" @default.
- W2894006709 countsByYear W28940067092019 @default.
- W2894006709 countsByYear W28940067092020 @default.
- W2894006709 countsByYear W28940067092021 @default.
- W2894006709 countsByYear W28940067092022 @default.
- W2894006709 countsByYear W28940067092023 @default.
- W2894006709 crossrefType "book-chapter" @default.
- W2894006709 hasAuthorship W2894006709A5001749693 @default.
- W2894006709 hasAuthorship W2894006709A5030617408 @default.
- W2894006709 hasAuthorship W2894006709A5038180826 @default.
- W2894006709 hasAuthorship W2894006709A5057329072 @default.
- W2894006709 hasAuthorship W2894006709A5065180456 @default.
- W2894006709 hasConcept C108583219 @default.
- W2894006709 hasConcept C119857082 @default.
- W2894006709 hasConcept C147168706 @default.
- W2894006709 hasConcept C154945302 @default.
- W2894006709 hasConcept C35525427 @default.
- W2894006709 hasConcept C41008148 @default.
- W2894006709 hasConcept C50644808 @default.
- W2894006709 hasConceptScore W2894006709C108583219 @default.
- W2894006709 hasConceptScore W2894006709C119857082 @default.
- W2894006709 hasConceptScore W2894006709C147168706 @default.
- W2894006709 hasConceptScore W2894006709C154945302 @default.
- W2894006709 hasConceptScore W2894006709C35525427 @default.
- W2894006709 hasConceptScore W2894006709C41008148 @default.
- W2894006709 hasConceptScore W2894006709C50644808 @default.
- W2894006709 hasLocation W28940067091 @default.
- W2894006709 hasOpenAccess W2894006709 @default.
- W2894006709 hasPrimaryLocation W28940067091 @default.
- W2894006709 hasRelatedWork W2584408238 @default.
- W2894006709 hasRelatedWork W2793022090 @default.
- W2894006709 hasRelatedWork W2919358988 @default.
- W2894006709 hasRelatedWork W2996568036 @default.
- W2894006709 hasRelatedWork W3192794374 @default.
- W2894006709 hasRelatedWork W3211546796 @default.
- W2894006709 hasRelatedWork W4205568523 @default.
- W2894006709 hasRelatedWork W4281386417 @default.
- W2894006709 hasRelatedWork W4298168912 @default.
- W2894006709 hasRelatedWork W4317242789 @default.
- W2894006709 isParatext "false" @default.
- W2894006709 isRetracted "false" @default.
- W2894006709 magId "2894006709" @default.
- W2894006709 workType "book-chapter" @default.