Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894029230> ?p ?o ?g. }
- W2894029230 abstract "Condition monitoring and fault detection of roller element bearings is of vital importance to ensuring safe and reliable operation of rotating machinery systems. Over the past few years, convolutional neural network (CNN) has been recognized as a useful tool for fault detection of roller element bearings. Unlike the traditional fault diagnosis approaches, CNN does not require manually extracting the fault-related features from the raw sensor data and most CNN-based fault diagnosis approaches feed the raw or shallowly pre-processed data as the training/testing inputs to a CNN model, thereby avoiding the need for manual feature extraction. As such, these approaches can be considered as purely data-driven. However, it has been proven that some well-established signal pre-processing techniques such as spectral kurtosis and envelope analysis can effectively clean and pre-process a raw signal to be a better representative of the health condition of a bearing without losing critical diagnostic information. This study proposes a new approach to bearing fault diagnosis, termed the SK-based multi-channel CNN (SCNN), that combines signal pre-processing techniques with a modified 1D CNN. The proposed SCNN approach involves two main steps: in the first step, each raw sensor signal acquired from a bearing is pre-processed to maximize the signal-to-noise ratio without losing critical diagnostic information carried by the signal; and in the second step, all pre-processed signals are fed into a 1D multi-channel CNN that classifies the health condition of the bearing. An experimental case study was carried out to evaluate the performance of the proposed approach. In this case study, a machinery fault simulator was used to validate the performance of SCNN in the presence of faults unrelated to bearings such as shaft misalignment and rotor unbalance." @default.
- W2894029230 created "2018-10-05" @default.
- W2894029230 creator A5006711461 @default.
- W2894029230 creator A5014210633 @default.
- W2894029230 creator A5034420112 @default.
- W2894029230 creator A5051890098 @default.
- W2894029230 creator A5053903749 @default.
- W2894029230 creator A5088441018 @default.
- W2894029230 date "2018-09-24" @default.
- W2894029230 modified "2023-10-17" @default.
- W2894029230 title "Deep Learning-based Approach for Fault Diagnosis of Rolling Element Bearings" @default.
- W2894029230 cites W2491643545 @default.
- W2894029230 doi "https://doi.org/10.36001/phmconf.2018.v10i1.526" @default.
- W2894029230 hasPublicationYear "2018" @default.
- W2894029230 type Work @default.
- W2894029230 sameAs 2894029230 @default.
- W2894029230 citedByCount "7" @default.
- W2894029230 countsByYear W28940292302019 @default.
- W2894029230 countsByYear W28940292302020 @default.
- W2894029230 countsByYear W28940292302021 @default.
- W2894029230 countsByYear W28940292302022 @default.
- W2894029230 countsByYear W28940292302023 @default.
- W2894029230 crossrefType "journal-article" @default.
- W2894029230 hasAuthorship W2894029230A5006711461 @default.
- W2894029230 hasAuthorship W2894029230A5014210633 @default.
- W2894029230 hasAuthorship W2894029230A5034420112 @default.
- W2894029230 hasAuthorship W2894029230A5051890098 @default.
- W2894029230 hasAuthorship W2894029230A5053903749 @default.
- W2894029230 hasAuthorship W2894029230A5088441018 @default.
- W2894029230 hasBestOaLocation W28940292301 @default.
- W2894029230 hasConcept C104267543 @default.
- W2894029230 hasConcept C108583219 @default.
- W2894029230 hasConcept C111919701 @default.
- W2894029230 hasConcept C115961682 @default.
- W2894029230 hasConcept C121332964 @default.
- W2894029230 hasConcept C127162648 @default.
- W2894029230 hasConcept C127313418 @default.
- W2894029230 hasConcept C132964779 @default.
- W2894029230 hasConcept C138885662 @default.
- W2894029230 hasConcept C153180895 @default.
- W2894029230 hasConcept C154945302 @default.
- W2894029230 hasConcept C165205528 @default.
- W2894029230 hasConcept C175551986 @default.
- W2894029230 hasConcept C198394728 @default.
- W2894029230 hasConcept C199360897 @default.
- W2894029230 hasConcept C199978012 @default.
- W2894029230 hasConcept C24890656 @default.
- W2894029230 hasConcept C2776401178 @default.
- W2894029230 hasConcept C2779843651 @default.
- W2894029230 hasConcept C2780155820 @default.
- W2894029230 hasConcept C31258907 @default.
- W2894029230 hasConcept C41008148 @default.
- W2894029230 hasConcept C41895202 @default.
- W2894029230 hasConcept C52622490 @default.
- W2894029230 hasConcept C81363708 @default.
- W2894029230 hasConcept C84462506 @default.
- W2894029230 hasConcept C9390403 @default.
- W2894029230 hasConcept C98045186 @default.
- W2894029230 hasConcept C99498987 @default.
- W2894029230 hasConceptScore W2894029230C104267543 @default.
- W2894029230 hasConceptScore W2894029230C108583219 @default.
- W2894029230 hasConceptScore W2894029230C111919701 @default.
- W2894029230 hasConceptScore W2894029230C115961682 @default.
- W2894029230 hasConceptScore W2894029230C121332964 @default.
- W2894029230 hasConceptScore W2894029230C127162648 @default.
- W2894029230 hasConceptScore W2894029230C127313418 @default.
- W2894029230 hasConceptScore W2894029230C132964779 @default.
- W2894029230 hasConceptScore W2894029230C138885662 @default.
- W2894029230 hasConceptScore W2894029230C153180895 @default.
- W2894029230 hasConceptScore W2894029230C154945302 @default.
- W2894029230 hasConceptScore W2894029230C165205528 @default.
- W2894029230 hasConceptScore W2894029230C175551986 @default.
- W2894029230 hasConceptScore W2894029230C198394728 @default.
- W2894029230 hasConceptScore W2894029230C199360897 @default.
- W2894029230 hasConceptScore W2894029230C199978012 @default.
- W2894029230 hasConceptScore W2894029230C24890656 @default.
- W2894029230 hasConceptScore W2894029230C2776401178 @default.
- W2894029230 hasConceptScore W2894029230C2779843651 @default.
- W2894029230 hasConceptScore W2894029230C2780155820 @default.
- W2894029230 hasConceptScore W2894029230C31258907 @default.
- W2894029230 hasConceptScore W2894029230C41008148 @default.
- W2894029230 hasConceptScore W2894029230C41895202 @default.
- W2894029230 hasConceptScore W2894029230C52622490 @default.
- W2894029230 hasConceptScore W2894029230C81363708 @default.
- W2894029230 hasConceptScore W2894029230C84462506 @default.
- W2894029230 hasConceptScore W2894029230C9390403 @default.
- W2894029230 hasConceptScore W2894029230C98045186 @default.
- W2894029230 hasConceptScore W2894029230C99498987 @default.
- W2894029230 hasIssue "1" @default.
- W2894029230 hasLocation W28940292301 @default.
- W2894029230 hasOpenAccess W2894029230 @default.
- W2894029230 hasPrimaryLocation W28940292301 @default.
- W2894029230 hasRelatedWork W2279398222 @default.
- W2894029230 hasRelatedWork W2390803358 @default.
- W2894029230 hasRelatedWork W2546942002 @default.
- W2894029230 hasRelatedWork W3156786002 @default.
- W2894029230 hasRelatedWork W3208485722 @default.
- W2894029230 hasRelatedWork W4229004419 @default.
- W2894029230 hasRelatedWork W4299822940 @default.
- W2894029230 hasRelatedWork W4312417841 @default.