Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894046213> ?p ?o ?g. }
- W2894046213 endingPage "1543" @default.
- W2894046213 startingPage "1530" @default.
- W2894046213 abstract "Unconventional reservoirs such as shales (mudrocks) and coals may exhibit an ultra-low matrix permeability (<0.001 md) challenging conventional laboratory-based methods for permeability measurement. Small-diameter core plug or crushed rock samples, combined with unsteady-state methods, are currently favored to reduce measurement times for ‘tight’ rocks. For core plug analysis, unsteady-state pulse-decay permeability (PDP) or steady-state methods (SS) are commonly employed in commercial laboratories, with the core plug sample subjected to confining stress. Analysis times, particularly for SS methods, may be excessive for ultra-low permeabilities in the nanodarcy range. Another limitation of both PDP and SS experiments applied to core plugs is that they do not represent the boundary conditions typically used to produce hydrocarbons from unconventional reservoirs in the subsurface through wells. Rate-transient analysis (RTA) is a technique used to quantitatively analyze production data from wells drilled into unconventional reservoirs to extract reservoir (e.g. permeability, hydrocarbons-in-place) and hydraulic fracture (conductivity, fracture length) properties. Multi-fractured horizontal wells (MFHWs) producing from low-permeability reservoirs commonly exhibit the flow-regime sequence of transient linear flow, where hydrocarbons flow through the reservoir orthogonal to hydraulic fractures or the horizontal well, followed by boundary-dominated flow caused by pressure interference between adjacent hydraulic fractures or wells. Transient linear flow may be analyzed using RTA methods to extract fracture or well-length (if permeability is known); the end of linear flow can be used to estimate permeability of the reservoir, and boundary-dominated flow to estimate hydrocarbons-in-place. In this work, a new experimental procedure and set-up, applied to core plugs under stress conditions, is developed to mimic well operating conditions encountered in the field (i.e. producing from a subsurface unconventional reservoir). After injection of methane gas into one end of the core plug, and pressure stabilization, the gas is flowed out of the same end of the core plug at constant pressure (with the aid of a backpressure regulator), and flow rates are measured with a flow meter. This procedure is applied to a core plug extracted from a low-permeability siltstone of the Montney Formation (western Canada). Repeated testing consistently demonstrated a transient linear flow period, as the gas pressure transient propagated along the core plug, followed by boundary-dominated flow after the pressure transient reached the end of the core plug; this sequence is identical to what is commonly observed in the field. Permeability was estimated using both the slope of a square-root of time plot (a common RTA method used to analyze transient linear flow), and the time at the end of linear flow combined with the linear flow distance of investigation (DOI) equation. Permeability from both techniques is in good agreement (±5% for both experiments performed), providing an important redundancy to the analysis procedure. Pore volume (and hence porosity, with bulk volume known) may be estimated from the time at the end of linear flow and the slope of the square-root of time plot – the calculated value is in excellent agreement (±2% for both experiments performed) with that obtained from pore volume/porosity estimates using a helium pycnometer (combined with calipered dimensions). Finally, test times for the ∼0.0007 md core plug sample, after the initiation of the production phase, are on the order of only a few minutes to obtain the two independent estimates of permeability and pore volume, which is faster than that achievable from a PDP test. The new innovative experimental procedure is successful in reproducing the physics of flow in unconventional reservoirs, with the results being analyzable with the same techniques applied to field data." @default.
- W2894046213 created "2018-10-05" @default.
- W2894046213 creator A5011286576 @default.
- W2894046213 creator A5051602136 @default.
- W2894046213 creator A5078941691 @default.
- W2894046213 creator A5083886577 @default.
- W2894046213 date "2019-01-01" @default.
- W2894046213 modified "2023-10-14" @default.
- W2894046213 title "A new low-permeability reservoir core analysis method based on rate-transient analysis theory" @default.
- W2894046213 cites W1965548833 @default.
- W2894046213 cites W1972914084 @default.
- W2894046213 cites W1976754291 @default.
- W2894046213 cites W1978359449 @default.
- W2894046213 cites W1985967631 @default.
- W2894046213 cites W1987648573 @default.
- W2894046213 cites W1999182687 @default.
- W2894046213 cites W2008463997 @default.
- W2894046213 cites W2035690905 @default.
- W2894046213 cites W2043974102 @default.
- W2894046213 cites W2059896164 @default.
- W2894046213 cites W2061101953 @default.
- W2894046213 cites W2066257999 @default.
- W2894046213 cites W2074811076 @default.
- W2894046213 cites W2081370559 @default.
- W2894046213 cites W2092952629 @default.
- W2894046213 cites W2093283927 @default.
- W2894046213 cites W2093445429 @default.
- W2894046213 cites W2114822781 @default.
- W2894046213 cites W2118113566 @default.
- W2894046213 cites W2256449359 @default.
- W2894046213 cites W2274134939 @default.
- W2894046213 cites W2306703959 @default.
- W2894046213 cites W2551195070 @default.
- W2894046213 cites W2588918128 @default.
- W2894046213 cites W2789840454 @default.
- W2894046213 cites W2793571199 @default.
- W2894046213 cites W2887754593 @default.
- W2894046213 cites W4248568756 @default.
- W2894046213 cites W855069068 @default.
- W2894046213 doi "https://doi.org/10.1016/j.fuel.2018.07.115" @default.
- W2894046213 hasPublicationYear "2019" @default.
- W2894046213 type Work @default.
- W2894046213 sameAs 2894046213 @default.
- W2894046213 citedByCount "31" @default.
- W2894046213 countsByYear W28940462132019 @default.
- W2894046213 countsByYear W28940462132020 @default.
- W2894046213 countsByYear W28940462132021 @default.
- W2894046213 countsByYear W28940462132022 @default.
- W2894046213 countsByYear W28940462132023 @default.
- W2894046213 crossrefType "journal-article" @default.
- W2894046213 hasAuthorship W2894046213A5011286576 @default.
- W2894046213 hasAuthorship W2894046213A5051602136 @default.
- W2894046213 hasAuthorship W2894046213A5078941691 @default.
- W2894046213 hasAuthorship W2894046213A5083886577 @default.
- W2894046213 hasConcept C120882062 @default.
- W2894046213 hasConcept C121332964 @default.
- W2894046213 hasConcept C127313418 @default.
- W2894046213 hasConcept C127413603 @default.
- W2894046213 hasConcept C146978453 @default.
- W2894046213 hasConcept C159390177 @default.
- W2894046213 hasConcept C159750122 @default.
- W2894046213 hasConcept C164205550 @default.
- W2894046213 hasConcept C172120300 @default.
- W2894046213 hasConcept C185592680 @default.
- W2894046213 hasConcept C187320778 @default.
- W2894046213 hasConcept C2777447996 @default.
- W2894046213 hasConcept C2779096232 @default.
- W2894046213 hasConcept C41625074 @default.
- W2894046213 hasConcept C55493867 @default.
- W2894046213 hasConcept C57879066 @default.
- W2894046213 hasConcept C63184880 @default.
- W2894046213 hasConcept C78762247 @default.
- W2894046213 hasConcept C90278072 @default.
- W2894046213 hasConceptScore W2894046213C120882062 @default.
- W2894046213 hasConceptScore W2894046213C121332964 @default.
- W2894046213 hasConceptScore W2894046213C127313418 @default.
- W2894046213 hasConceptScore W2894046213C127413603 @default.
- W2894046213 hasConceptScore W2894046213C146978453 @default.
- W2894046213 hasConceptScore W2894046213C159390177 @default.
- W2894046213 hasConceptScore W2894046213C159750122 @default.
- W2894046213 hasConceptScore W2894046213C164205550 @default.
- W2894046213 hasConceptScore W2894046213C172120300 @default.
- W2894046213 hasConceptScore W2894046213C185592680 @default.
- W2894046213 hasConceptScore W2894046213C187320778 @default.
- W2894046213 hasConceptScore W2894046213C2777447996 @default.
- W2894046213 hasConceptScore W2894046213C2779096232 @default.
- W2894046213 hasConceptScore W2894046213C41625074 @default.
- W2894046213 hasConceptScore W2894046213C55493867 @default.
- W2894046213 hasConceptScore W2894046213C57879066 @default.
- W2894046213 hasConceptScore W2894046213C63184880 @default.
- W2894046213 hasConceptScore W2894046213C78762247 @default.
- W2894046213 hasConceptScore W2894046213C90278072 @default.
- W2894046213 hasLocation W28940462131 @default.
- W2894046213 hasOpenAccess W2894046213 @default.
- W2894046213 hasPrimaryLocation W28940462131 @default.
- W2894046213 hasRelatedWork W1988341964 @default.
- W2894046213 hasRelatedWork W2073215777 @default.
- W2894046213 hasRelatedWork W2294280525 @default.