Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894076775> ?p ?o ?g. }
- W2894076775 endingPage "42" @default.
- W2894076775 startingPage "31" @default.
- W2894076775 abstract "Although many exciting applications of molecular communication (MC) systems are envisioned to be at microscale, the MC testbeds reported in the literature so far are mostly at macroscale. This may partially be due to the fact that controlling an MC system at microscale is challenging. To link the macroworld to the microworld, we propose and demonstrate a biological signal conversion interface that can also be seen as a microscale modulator. In particular, the proposed interface transduces an optical signal, which is controlled using a light-emitting diode, into a chemical signal by changing the pH of the environment. The modulator is realized using Escherichia coli bacteria as microscale entity expressing the light-driven proton pump gloeorhodopsin from Gloeobacter violaceus. Upon inducing external light stimuli, these bacteria locally change their surrounding pH level by exporting protons into the environment. To verify the effectiveness of the proposed optical-to-chemical signal converter, we analyze the pH signal measured by a pH sensor, which serves as a receiver. We develop an analytical parametric model for the induced chemical signal as a function of the applied optical signal. Using this model, we derive a training-based channel estimator that estimates the parameters of the proposed model to fit the measurement data based on a least square error approach. We further derive the optimal maximum likelihood detector and a suboptimal low-complexity detector to recover the transmitted data from the measured received signal. It is shown that the proposed parametric model is in good agreement with the measurement data. Moreover, for an example scenario, we show that the proposed setup is able to successfully convert an optical signal representing a sequence of binary symbols into a chemical signal with a bit rate of 1 bit/min and recover the transmitted data from the chemical signal using the proposed estimation and detection schemes. The proposed modulator may form the basis for future MC testbeds and applications at microscale." @default.
- W2894076775 created "2018-10-05" @default.
- W2894076775 creator A5010658038 @default.
- W2894076775 creator A5029357348 @default.
- W2894076775 creator A5033990377 @default.
- W2894076775 creator A5060584713 @default.
- W2894076775 creator A5062351885 @default.
- W2894076775 creator A5063161060 @default.
- W2894076775 creator A5065649245 @default.
- W2894076775 creator A5070760948 @default.
- W2894076775 creator A5080628439 @default.
- W2894076775 creator A5087843323 @default.
- W2894076775 creator A5088261144 @default.
- W2894076775 creator A5091483516 @default.
- W2894076775 date "2019-01-01" @default.
- W2894076775 modified "2023-10-05" @default.
- W2894076775 title "Biological Optical-to-Chemical Signal Conversion Interface: A Small-Scale Modulator for Molecular Communications" @default.
- W2894076775 cites W1651537430 @default.
- W2894076775 cites W1886915855 @default.
- W2894076775 cites W1924285665 @default.
- W2894076775 cites W1973151289 @default.
- W2894076775 cites W1980239136 @default.
- W2894076775 cites W1983398269 @default.
- W2894076775 cites W1983844815 @default.
- W2894076775 cites W1991571524 @default.
- W2894076775 cites W1993870640 @default.
- W2894076775 cites W2016684042 @default.
- W2894076775 cites W2019338290 @default.
- W2894076775 cites W2019622291 @default.
- W2894076775 cites W2020629141 @default.
- W2894076775 cites W2031542240 @default.
- W2894076775 cites W2050167213 @default.
- W2894076775 cites W2081976340 @default.
- W2894076775 cites W2091407472 @default.
- W2894076775 cites W2124745060 @default.
- W2894076775 cites W2167495642 @default.
- W2894076775 cites W2176632612 @default.
- W2894076775 cites W2260681306 @default.
- W2894076775 cites W2294456571 @default.
- W2894076775 cites W2511449563 @default.
- W2894076775 cites W2515867024 @default.
- W2894076775 cites W2768495280 @default.
- W2894076775 cites W2962847463 @default.
- W2894076775 cites W2963006876 @default.
- W2894076775 cites W3099005205 @default.
- W2894076775 cites W3100991707 @default.
- W2894076775 cites W4212785015 @default.
- W2894076775 doi "https://doi.org/10.1109/tnb.2018.2870910" @default.
- W2894076775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30235144" @default.
- W2894076775 hasPublicationYear "2019" @default.
- W2894076775 type Work @default.
- W2894076775 sameAs 2894076775 @default.
- W2894076775 citedByCount "50" @default.
- W2894076775 countsByYear W28940767752018 @default.
- W2894076775 countsByYear W28940767752019 @default.
- W2894076775 countsByYear W28940767752020 @default.
- W2894076775 countsByYear W28940767752021 @default.
- W2894076775 countsByYear W28940767752022 @default.
- W2894076775 countsByYear W28940767752023 @default.
- W2894076775 crossrefType "journal-article" @default.
- W2894076775 hasAuthorship W2894076775A5010658038 @default.
- W2894076775 hasAuthorship W2894076775A5029357348 @default.
- W2894076775 hasAuthorship W2894076775A5033990377 @default.
- W2894076775 hasAuthorship W2894076775A5060584713 @default.
- W2894076775 hasAuthorship W2894076775A5062351885 @default.
- W2894076775 hasAuthorship W2894076775A5063161060 @default.
- W2894076775 hasAuthorship W2894076775A5065649245 @default.
- W2894076775 hasAuthorship W2894076775A5070760948 @default.
- W2894076775 hasAuthorship W2894076775A5080628439 @default.
- W2894076775 hasAuthorship W2894076775A5087843323 @default.
- W2894076775 hasAuthorship W2894076775A5088261144 @default.
- W2894076775 hasAuthorship W2894076775A5091483516 @default.
- W2894076775 hasBestOaLocation W28940767752 @default.
- W2894076775 hasConcept C105795698 @default.
- W2894076775 hasConcept C113843644 @default.
- W2894076775 hasConcept C117251300 @default.
- W2894076775 hasConcept C120665830 @default.
- W2894076775 hasConcept C121332964 @default.
- W2894076775 hasConcept C127162648 @default.
- W2894076775 hasConcept C145420912 @default.
- W2894076775 hasConcept C179428855 @default.
- W2894076775 hasConcept C186060115 @default.
- W2894076775 hasConcept C199360897 @default.
- W2894076775 hasConcept C2779767902 @default.
- W2894076775 hasConcept C2779843651 @default.
- W2894076775 hasConcept C32909587 @default.
- W2894076775 hasConcept C33923547 @default.
- W2894076775 hasConcept C41008148 @default.
- W2894076775 hasConcept C47798520 @default.
- W2894076775 hasConcept C49040817 @default.
- W2894076775 hasConcept C55352822 @default.
- W2894076775 hasConcept C62520636 @default.
- W2894076775 hasConcept C76155785 @default.
- W2894076775 hasConcept C86803240 @default.
- W2894076775 hasConcept C94915269 @default.
- W2894076775 hasConceptScore W2894076775C105795698 @default.
- W2894076775 hasConceptScore W2894076775C113843644 @default.
- W2894076775 hasConceptScore W2894076775C117251300 @default.