Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894077582> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2894077582 abstract "Certain families of graphs can be used to obtain multivariate polynomials for cryptographic algorithms. In particular, in this paper, we introduce stream ciphers based on non-bijective multivariate maps. The presented symmetric encryption algorithms are based on three families of bipartite graphs with partition sets isomorphic to $mathbb{K}^{n}$ where $mathbb{K}$ is selected as the finite commutative ring. The plainspace of the algorithm is $Omega = {xvert sum x_{i} in mathbb{K}{ast},x in mathbb{K}^{n}} subset mathbb{K}^{n}, Omegacong mathbb{K}{ast} times mathbb{K}^{n-1}$ . We describe the algorithm for the case $mathbb{K}= mathbb{Z}_{2^{m}}, m leq 2$ . In fact, we use the relation $d ast d_{dec}equiv 1(mod 2^{m-1}), d, d_{dec}inmathbb{Z}^{ast}_{2^{m-1}}$ to obtain encryption polynomial map of degree greater than or equal to $d + 2$ and decryption map of degree greater than or equal to $d_{dec} + 2$ . We assume $d_{dec}$ grows with the growth of parameter $m$ , because this makes cryptanalysis very difficult task. Symmetric encryption and decryption algorithms for users are numerical recurrent processes, not requiring generation of encryption and decryption maps in their symbolic forms. They use arithmetical operations of addition, subtraction, and multiplication. That's why the algorithms are robust (execution speed is $O(n)$ ). To break the algorithm an adversary must use linearization attacks for recovering non-bijective “decryption map” of degree greater than $d_{dec} + 2$ in its symbolic form. To achieve this, the adversary needs at least $O(n d_{dec} + 2)$ pairs of plaintext and corresponding ciphertext to restore the non-bijective map of degree greater than or equal to $d_{dec} + 2$ . We present tables for evaluation of execution time for m = 8 with various length of passwords and sizes of files. Computer simulations demonstrate good mixing properties of the encryption functions." @default.
- W2894077582 created "2018-10-05" @default.
- W2894077582 creator A5011249086 @default.
- W2894077582 creator A5012596722 @default.
- W2894077582 creator A5048566086 @default.
- W2894077582 creator A5051445856 @default.
- W2894077582 creator A5057015385 @default.
- W2894077582 date "2018-09-26" @default.
- W2894077582 modified "2023-10-17" @default.
- W2894077582 title "On the implementation of new symmetric ciphers based on non-bijective multivariate maps" @default.
- W2894077582 cites W1488277370 @default.
- W2894077582 cites W1504871872 @default.
- W2894077582 cites W1579329156 @default.
- W2894077582 cites W162015597 @default.
- W2894077582 cites W1964205483 @default.
- W2894077582 cites W1965501765 @default.
- W2894077582 cites W2012280556 @default.
- W2894077582 cites W2054867866 @default.
- W2894077582 cites W2071256459 @default.
- W2894077582 cites W2395702535 @default.
- W2894077582 cites W2498463796 @default.
- W2894077582 cites W2610547191 @default.
- W2894077582 doi "https://doi.org/10.15439/2018f204" @default.
- W2894077582 hasPublicationYear "2018" @default.
- W2894077582 type Work @default.
- W2894077582 sameAs 2894077582 @default.
- W2894077582 citedByCount "2" @default.
- W2894077582 countsByYear W28940775822022 @default.
- W2894077582 crossrefType "proceedings-article" @default.
- W2894077582 hasAuthorship W2894077582A5011249086 @default.
- W2894077582 hasAuthorship W2894077582A5012596722 @default.
- W2894077582 hasAuthorship W2894077582A5048566086 @default.
- W2894077582 hasAuthorship W2894077582A5051445856 @default.
- W2894077582 hasAuthorship W2894077582A5057015385 @default.
- W2894077582 hasBestOaLocation W28940775821 @default.
- W2894077582 hasConcept C106544461 @default.
- W2894077582 hasConcept C111919701 @default.
- W2894077582 hasConcept C11413529 @default.
- W2894077582 hasConcept C114614502 @default.
- W2894077582 hasConcept C118615104 @default.
- W2894077582 hasConcept C121332964 @default.
- W2894077582 hasConcept C132525143 @default.
- W2894077582 hasConcept C148730421 @default.
- W2894077582 hasConcept C178489894 @default.
- W2894077582 hasConcept C181149355 @default.
- W2894077582 hasConcept C197657726 @default.
- W2894077582 hasConcept C24424167 @default.
- W2894077582 hasConcept C24890656 @default.
- W2894077582 hasConcept C2775997480 @default.
- W2894077582 hasConcept C33923547 @default.
- W2894077582 hasConcept C41008148 @default.
- W2894077582 hasConceptScore W2894077582C106544461 @default.
- W2894077582 hasConceptScore W2894077582C111919701 @default.
- W2894077582 hasConceptScore W2894077582C11413529 @default.
- W2894077582 hasConceptScore W2894077582C114614502 @default.
- W2894077582 hasConceptScore W2894077582C118615104 @default.
- W2894077582 hasConceptScore W2894077582C121332964 @default.
- W2894077582 hasConceptScore W2894077582C132525143 @default.
- W2894077582 hasConceptScore W2894077582C148730421 @default.
- W2894077582 hasConceptScore W2894077582C178489894 @default.
- W2894077582 hasConceptScore W2894077582C181149355 @default.
- W2894077582 hasConceptScore W2894077582C197657726 @default.
- W2894077582 hasConceptScore W2894077582C24424167 @default.
- W2894077582 hasConceptScore W2894077582C24890656 @default.
- W2894077582 hasConceptScore W2894077582C2775997480 @default.
- W2894077582 hasConceptScore W2894077582C33923547 @default.
- W2894077582 hasConceptScore W2894077582C41008148 @default.
- W2894077582 hasLocation W28940775821 @default.
- W2894077582 hasOpenAccess W2894077582 @default.
- W2894077582 hasPrimaryLocation W28940775821 @default.
- W2894077582 hasRelatedWork W1568587963 @default.
- W2894077582 hasRelatedWork W1638064344 @default.
- W2894077582 hasRelatedWork W1819813188 @default.
- W2894077582 hasRelatedWork W1965672217 @default.
- W2894077582 hasRelatedWork W2094909724 @default.
- W2894077582 hasRelatedWork W2110006913 @default.
- W2894077582 hasRelatedWork W2115652664 @default.
- W2894077582 hasRelatedWork W2183499126 @default.
- W2894077582 hasRelatedWork W2276768337 @default.
- W2894077582 hasRelatedWork W2354536500 @default.
- W2894077582 hasRelatedWork W2396759562 @default.
- W2894077582 hasRelatedWork W2516521515 @default.
- W2894077582 hasRelatedWork W2803828316 @default.
- W2894077582 hasRelatedWork W2947916524 @default.
- W2894077582 hasRelatedWork W2952610108 @default.
- W2894077582 hasRelatedWork W3106407125 @default.
- W2894077582 hasRelatedWork W3158394527 @default.
- W2894077582 hasRelatedWork W405661327 @default.
- W2894077582 hasRelatedWork W3081567183 @default.
- W2894077582 hasRelatedWork W644599125 @default.
- W2894077582 isParatext "false" @default.
- W2894077582 isRetracted "false" @default.
- W2894077582 magId "2894077582" @default.
- W2894077582 workType "article" @default.