Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894084312> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2894084312 abstract "The paper is another step towards a realisation of the goal, advanced in articles 1706.05682 [hep-th] and 1808.04470 [hep-th], of a systematic supersymmetry-equivariant geometrisation of physically distinguished Green-Schwarz super-(p+2)-cocycles defining classes in the supersymmetry-invariant refinement of the de Rham cohomology of homogeneous spaces of (supersymmetry) Lie supergroups, associated with reductive decompositions of their Lie superalgebras. It deals with a correlated geometrisation of a pair of such super-(p+2)-cocycles on spaces in correspondence under a blow-up transformation dual to the Inonu-Wigner contraction that relates the respective (supersymmetry) Lie superalgebras, the latter correspondence being taken as the organising principle of the geometrisation procedure that exploits the link between the Cartan-Eilenberg cohomology of the supersymmetry group and the Chevalley-Eilenberg cohomology of its Lie superalgebra, alongside a cohomological classification of central extensions thereof. A general scheme of a correlated geometrisation compatible with the contraction is laid out and illustrated on the nontrivial example of a pair of consistent super-0-brane backgrounds: the super-Minkowski space $sMink^{3,1|8}$ with the standard N=2 Green-Schwarz super-2-cocycle on it and the super-$AdS_2 times S^2$ space with Zhou's super-2-cocycle on it, asymptoting to the former in the limit of an infinite common radius of the $AdS_2$ and the $S^2$ in the body $AdS_2times S^2$ of the supertarget. The geometrisation yields the respective supersymmetry-equivariant super-0-gerbes, i.e., the prequantum bundles of the associated Green-Schwarz super-$sigma$-models in the Nambu-Goto formulation. Upon passing to the equivalent Hughes-Polchinski formulation of the models, the relevant extended super-0-gerbes are verified to possess a weak $kappa$-equivariant structure." @default.
- W2894084312 created "2018-10-05" @default.
- W2894084312 creator A5052707350 @default.
- W2894084312 date "2018-10-01" @default.
- W2894084312 modified "2023-09-27" @default.
- W2894084312 title "Equivariant prequantisation of the super-0-brane in ${rm AdS}_2timesmathbb{S}^2$ - a toy model for supergerbe theory on curved spaces" @default.
- W2894084312 cites W1492282059 @default.
- W2894084312 cites W1964339321 @default.
- W2894084312 cites W1984273239 @default.
- W2894084312 cites W1986651545 @default.
- W2894084312 cites W1992507507 @default.
- W2894084312 cites W1999142898 @default.
- W2894084312 cites W2009078811 @default.
- W2894084312 cites W2019473800 @default.
- W2894084312 cites W2021512971 @default.
- W2894084312 cites W2032894264 @default.
- W2894084312 cites W2039843295 @default.
- W2894084312 cites W2042450316 @default.
- W2894084312 cites W2050450274 @default.
- W2894084312 cites W2056518234 @default.
- W2894084312 cites W2056669880 @default.
- W2894084312 cites W2062474510 @default.
- W2894084312 cites W2064675480 @default.
- W2894084312 cites W2076855924 @default.
- W2894084312 cites W2083811807 @default.
- W2894084312 cites W2101553163 @default.
- W2894084312 cites W2121481439 @default.
- W2894084312 cites W2123989731 @default.
- W2894084312 cites W2130077540 @default.
- W2894084312 cites W2964351775 @default.
- W2894084312 cites W3038113681 @default.
- W2894084312 cites W3101381885 @default.
- W2894084312 hasPublicationYear "2018" @default.
- W2894084312 type Work @default.
- W2894084312 sameAs 2894084312 @default.
- W2894084312 citedByCount "0" @default.
- W2894084312 crossrefType "posted-content" @default.
- W2894084312 hasAuthorship W2894084312A5052707350 @default.
- W2894084312 hasConcept C109214941 @default.
- W2894084312 hasConcept C116674579 @default.
- W2894084312 hasConcept C119374780 @default.
- W2894084312 hasConcept C121332964 @default.
- W2894084312 hasConcept C171036898 @default.
- W2894084312 hasConcept C202444582 @default.
- W2894084312 hasConcept C33923547 @default.
- W2894084312 hasConcept C72738302 @default.
- W2894084312 hasConcept C78606066 @default.
- W2894084312 hasConceptScore W2894084312C109214941 @default.
- W2894084312 hasConceptScore W2894084312C116674579 @default.
- W2894084312 hasConceptScore W2894084312C119374780 @default.
- W2894084312 hasConceptScore W2894084312C121332964 @default.
- W2894084312 hasConceptScore W2894084312C171036898 @default.
- W2894084312 hasConceptScore W2894084312C202444582 @default.
- W2894084312 hasConceptScore W2894084312C33923547 @default.
- W2894084312 hasConceptScore W2894084312C72738302 @default.
- W2894084312 hasConceptScore W2894084312C78606066 @default.
- W2894084312 hasLocation W28940843121 @default.
- W2894084312 hasOpenAccess W2894084312 @default.
- W2894084312 hasPrimaryLocation W28940843121 @default.
- W2894084312 hasRelatedWork W1972953270 @default.
- W2894084312 hasRelatedWork W1995371782 @default.
- W2894084312 hasRelatedWork W2046586694 @default.
- W2894084312 hasRelatedWork W2069298297 @default.
- W2894084312 hasRelatedWork W2297841963 @default.
- W2894084312 hasRelatedWork W2484572859 @default.
- W2894084312 hasRelatedWork W2547094850 @default.
- W2894084312 hasRelatedWork W2662238629 @default.
- W2894084312 hasRelatedWork W2758067208 @default.
- W2894084312 hasRelatedWork W2765996872 @default.
- W2894084312 hasRelatedWork W2788314389 @default.
- W2894084312 hasRelatedWork W2807565485 @default.
- W2894084312 hasRelatedWork W2901634780 @default.
- W2894084312 hasRelatedWork W2918964978 @default.
- W2894084312 hasRelatedWork W2964142566 @default.
- W2894084312 hasRelatedWork W2969460659 @default.
- W2894084312 hasRelatedWork W3099267002 @default.
- W2894084312 hasRelatedWork W3122188168 @default.
- W2894084312 hasRelatedWork W3160294346 @default.
- W2894084312 hasRelatedWork W3200382951 @default.
- W2894084312 isParatext "false" @default.
- W2894084312 isRetracted "false" @default.
- W2894084312 magId "2894084312" @default.
- W2894084312 workType "article" @default.