Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894086308> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2894086308 endingPage "681" @default.
- W2894086308 startingPage "669" @default.
- W2894086308 abstract "Security incident tracking systems receive a continuous, unlimited inflow of observations, where in the typical case the most recent ones are the most important. These data flows and characterized by high volatility. Their characteristics can change drastically over time in an unpredictable way, differentiating their typical normal behavior. In most cases it is not possible to store all of the historical samples, since their volume is unlimited. This fact requires the extraction of real-time knowledge over a subset of the flow, which contains a small but recent percentage of all observations. This creates serious objections to the accuracy and reliability of the employed classifiers. The research described herein, uses a Dynamic Ensemble Learning (DYENL) approach for Data Stream Analysis (DELDaStrA) which is employed in RealTime Threat Detection systems. More specifically, it proposes a DYENL model that uses the “Kappa” architecture to perform analysis of data flows. The DELDaStrA is based on the hybrid combination of k Nearest Neighbor (kNN) Classifiers, with Adaptive Random Forest (ARF) and Primal Estimated SubGradient Solver for Support Vector Machines (SVM) (SPegasos). In fact, it performs a dynamic extraction of the weighted average of the three results, to maximize the classification accuracy." @default.
- W2894086308 created "2018-10-05" @default.
- W2894086308 creator A5013635993 @default.
- W2894086308 creator A5064140827 @default.
- W2894086308 creator A5091442194 @default.
- W2894086308 date "2018-01-01" @default.
- W2894086308 modified "2023-09-26" @default.
- W2894086308 title "A Dynamic Ensemble Learning Framework for Data Stream Analysis and Real-Time Threat Detection" @default.
- W2894086308 cites W1499021337 @default.
- W2894086308 cites W1534477342 @default.
- W2894086308 cites W1972141404 @default.
- W2894086308 cites W206505952 @default.
- W2894086308 cites W2075836477 @default.
- W2894086308 cites W2102387656 @default.
- W2894086308 cites W2125993116 @default.
- W2894086308 cites W2140396831 @default.
- W2894086308 cites W2184867197 @default.
- W2894086308 cites W2188660960 @default.
- W2894086308 cites W2257171480 @default.
- W2894086308 cites W2258615064 @default.
- W2894086308 cites W2345862909 @default.
- W2894086308 cites W2487087946 @default.
- W2894086308 cites W2524655848 @default.
- W2894086308 cites W2585508806 @default.
- W2894086308 cites W2585528949 @default.
- W2894086308 cites W2611545520 @default.
- W2894086308 cites W2616786996 @default.
- W2894086308 cites W2626498001 @default.
- W2894086308 cites W2741086811 @default.
- W2894086308 cites W2745032840 @default.
- W2894086308 cites W2754080593 @default.
- W2894086308 cites W2771644997 @default.
- W2894086308 cites W2773675312 @default.
- W2894086308 cites W2778588213 @default.
- W2894086308 cites W3122285750 @default.
- W2894086308 cites W331198973 @default.
- W2894086308 cites W4232478844 @default.
- W2894086308 doi "https://doi.org/10.1007/978-3-030-01418-6_66" @default.
- W2894086308 hasPublicationYear "2018" @default.
- W2894086308 type Work @default.
- W2894086308 sameAs 2894086308 @default.
- W2894086308 citedByCount "10" @default.
- W2894086308 countsByYear W28940863082019 @default.
- W2894086308 countsByYear W28940863082021 @default.
- W2894086308 countsByYear W28940863082022 @default.
- W2894086308 countsByYear W28940863082023 @default.
- W2894086308 crossrefType "book-chapter" @default.
- W2894086308 hasAuthorship W2894086308A5013635993 @default.
- W2894086308 hasAuthorship W2894086308A5064140827 @default.
- W2894086308 hasAuthorship W2894086308A5091442194 @default.
- W2894086308 hasConcept C119857082 @default.
- W2894086308 hasConcept C124101348 @default.
- W2894086308 hasConcept C154945302 @default.
- W2894086308 hasConcept C2778484313 @default.
- W2894086308 hasConcept C41008148 @default.
- W2894086308 hasConcept C45942800 @default.
- W2894086308 hasConcept C60777511 @default.
- W2894086308 hasConcept C76155785 @default.
- W2894086308 hasConcept C79403827 @default.
- W2894086308 hasConcept C89198739 @default.
- W2894086308 hasConceptScore W2894086308C119857082 @default.
- W2894086308 hasConceptScore W2894086308C124101348 @default.
- W2894086308 hasConceptScore W2894086308C154945302 @default.
- W2894086308 hasConceptScore W2894086308C2778484313 @default.
- W2894086308 hasConceptScore W2894086308C41008148 @default.
- W2894086308 hasConceptScore W2894086308C45942800 @default.
- W2894086308 hasConceptScore W2894086308C60777511 @default.
- W2894086308 hasConceptScore W2894086308C76155785 @default.
- W2894086308 hasConceptScore W2894086308C79403827 @default.
- W2894086308 hasConceptScore W2894086308C89198739 @default.
- W2894086308 hasLocation W28940863081 @default.
- W2894086308 hasLocation W28940863082 @default.
- W2894086308 hasOpenAccess W2894086308 @default.
- W2894086308 hasPrimaryLocation W28940863081 @default.
- W2894086308 hasRelatedWork W1660343246 @default.
- W2894086308 hasRelatedWork W1987429824 @default.
- W2894086308 hasRelatedWork W2026324356 @default.
- W2894086308 hasRelatedWork W2151673632 @default.
- W2894086308 hasRelatedWork W2574092225 @default.
- W2894086308 hasRelatedWork W2736127210 @default.
- W2894086308 hasRelatedWork W2964491809 @default.
- W2894086308 hasRelatedWork W4285046548 @default.
- W2894086308 hasRelatedWork W4285741730 @default.
- W2894086308 hasRelatedWork W4313488044 @default.
- W2894086308 isParatext "false" @default.
- W2894086308 isRetracted "false" @default.
- W2894086308 magId "2894086308" @default.
- W2894086308 workType "book-chapter" @default.