Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894096504> ?p ?o ?g. }
- W2894096504 endingPage "125" @default.
- W2894096504 startingPage "118" @default.
- W2894096504 abstract "Social and physical processes often exhibit both macro-level geographic smoothness – implying positive spatial dependence – and micro-level discontinuities – suggesting implicit step changes or boundaries in the data. However, a simultaneous treatment of the two features in a unified statistical model poses great challenges. This study extends an innovative locally adaptive spatial auto-regressive modelling approach to a multi-level modelling framework in order to explore multiple-scale geographical data. It develops a Bayesian locally adaptive spatial multi-level model that takes into account horizontal global spatial dependence and local step changes, as well as a vertical group dependency effect imposed by the multiple-scale data structure. At its heart, the correlation structures of spatial units implied by a spatial weights matrix are learned along with other model parameters using an iterative estimation algorithm, rather than being assumed to be invariant and exogenous. A Bayesian Markov chain Monte Carlo (MCMC) sampler for implementing this new spatial multi-level model is derived. The developed methodology is applied to infer neighbourhood quality using property transaction data, and to examine potential correlates of neighbourhood quality in Liverpool. The results reveal a complex and fragmented geography of neighbourhood quality; besides an overall smoothness trend, boundaries delimiting neighbourhood quality are scattered across Liverpool. Socio-economics, built environment, and locational characteristics are statistically significantly associated with neighbourhood quality." @default.
- W2894096504 created "2018-10-05" @default.
- W2894096504 creator A5020672739 @default.
- W2894096504 creator A5056778419 @default.
- W2894096504 creator A5070895919 @default.
- W2894096504 creator A5090753505 @default.
- W2894096504 date "2019-01-01" @default.
- W2894096504 modified "2023-09-24" @default.
- W2894096504 title "Inferring neighbourhood quality with property transaction records by using a locally adaptive spatial multi-level model" @default.
- W2894096504 cites W1663665921 @default.
- W2894096504 cites W1931576180 @default.
- W2894096504 cites W1943341549 @default.
- W2894096504 cites W1978760884 @default.
- W2894096504 cites W1979889901 @default.
- W2894096504 cites W1994610198 @default.
- W2894096504 cites W2011780983 @default.
- W2894096504 cites W2029959099 @default.
- W2894096504 cites W2040303896 @default.
- W2894096504 cites W2040399514 @default.
- W2894096504 cites W2057765075 @default.
- W2894096504 cites W2058801639 @default.
- W2894096504 cites W2077416780 @default.
- W2894096504 cites W2080032360 @default.
- W2894096504 cites W2100030229 @default.
- W2894096504 cites W2102763668 @default.
- W2894096504 cites W2107958285 @default.
- W2894096504 cites W2112850772 @default.
- W2894096504 cites W2129578264 @default.
- W2894096504 cites W2129766521 @default.
- W2894096504 cites W2133305600 @default.
- W2894096504 cites W2142613877 @default.
- W2894096504 cites W2269698589 @default.
- W2894096504 cites W2301115945 @default.
- W2894096504 cites W2512948170 @default.
- W2894096504 cites W2571865795 @default.
- W2894096504 cites W2788679716 @default.
- W2894096504 cites W3126101838 @default.
- W2894096504 cites W4234195429 @default.
- W2894096504 doi "https://doi.org/10.1016/j.compenvurbsys.2018.09.003" @default.
- W2894096504 hasPublicationYear "2019" @default.
- W2894096504 type Work @default.
- W2894096504 sameAs 2894096504 @default.
- W2894096504 citedByCount "16" @default.
- W2894096504 countsByYear W28940965042019 @default.
- W2894096504 countsByYear W28940965042020 @default.
- W2894096504 countsByYear W28940965042021 @default.
- W2894096504 countsByYear W28940965042022 @default.
- W2894096504 countsByYear W28940965042023 @default.
- W2894096504 crossrefType "journal-article" @default.
- W2894096504 hasAuthorship W2894096504A5020672739 @default.
- W2894096504 hasAuthorship W2894096504A5056778419 @default.
- W2894096504 hasAuthorship W2894096504A5070895919 @default.
- W2894096504 hasAuthorship W2894096504A5090753505 @default.
- W2894096504 hasBestOaLocation W28940965041 @default.
- W2894096504 hasConcept C105795698 @default.
- W2894096504 hasConcept C107673813 @default.
- W2894096504 hasConcept C111350023 @default.
- W2894096504 hasConcept C119857082 @default.
- W2894096504 hasConcept C124101348 @default.
- W2894096504 hasConcept C134306372 @default.
- W2894096504 hasConcept C149782125 @default.
- W2894096504 hasConcept C154945302 @default.
- W2894096504 hasConcept C158709400 @default.
- W2894096504 hasConcept C159620131 @default.
- W2894096504 hasConcept C161677786 @default.
- W2894096504 hasConcept C18903297 @default.
- W2894096504 hasConcept C205649164 @default.
- W2894096504 hasConcept C33923547 @default.
- W2894096504 hasConcept C41008148 @default.
- W2894096504 hasConcept C64341305 @default.
- W2894096504 hasConcept C86803240 @default.
- W2894096504 hasConceptScore W2894096504C105795698 @default.
- W2894096504 hasConceptScore W2894096504C107673813 @default.
- W2894096504 hasConceptScore W2894096504C111350023 @default.
- W2894096504 hasConceptScore W2894096504C119857082 @default.
- W2894096504 hasConceptScore W2894096504C124101348 @default.
- W2894096504 hasConceptScore W2894096504C134306372 @default.
- W2894096504 hasConceptScore W2894096504C149782125 @default.
- W2894096504 hasConceptScore W2894096504C154945302 @default.
- W2894096504 hasConceptScore W2894096504C158709400 @default.
- W2894096504 hasConceptScore W2894096504C159620131 @default.
- W2894096504 hasConceptScore W2894096504C161677786 @default.
- W2894096504 hasConceptScore W2894096504C18903297 @default.
- W2894096504 hasConceptScore W2894096504C205649164 @default.
- W2894096504 hasConceptScore W2894096504C33923547 @default.
- W2894096504 hasConceptScore W2894096504C41008148 @default.
- W2894096504 hasConceptScore W2894096504C64341305 @default.
- W2894096504 hasConceptScore W2894096504C86803240 @default.
- W2894096504 hasFunder F4320334630 @default.
- W2894096504 hasLocation W28940965041 @default.
- W2894096504 hasLocation W28940965042 @default.
- W2894096504 hasOpenAccess W2894096504 @default.
- W2894096504 hasPrimaryLocation W28940965041 @default.
- W2894096504 hasRelatedWork W1548521871 @default.
- W2894096504 hasRelatedWork W2037527529 @default.
- W2894096504 hasRelatedWork W2073991519 @default.
- W2894096504 hasRelatedWork W2196486546 @default.
- W2894096504 hasRelatedWork W2739886334 @default.