Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894110571> ?p ?o ?g. }
- W2894110571 endingPage "1948" @default.
- W2894110571 startingPage "1938" @default.
- W2894110571 abstract "Dynamic spectrum access (DSA) is regarded as an effective and efficient technology to share radio spectrum among different networks. As a secondary user (SU), a DSA device will face two critical problems: avoiding causing harmful interference to primary users (PUs), and conducting effective interference coordination with other secondary users. These two problems become even more challenging for a distributed DSA network where there is no centralized controllers for SUs. In this paper, we investigate communication strategies of a distributive DSA network under the presence of spectrum sensing errors. To be specific, we apply the powerful machine learning tool, deep reinforcement learning (DRL), for SUs to learn appropriate spectrum access strategies in a distributed fashion assuming NO knowledge of the underlying system statistics. Furthermore, a special type of recurrent neural network (RNN), called the reservoir computing (RC), is utilized to realize DRL by taking advantage of the underlying temporal correlation of the DSA network. Using the introduced machine learning-based strategy, SUs could make spectrum access decisions distributedly relying only on their own current and past spectrum sensing outcomes. Through extensive experiments, our results suggest that the RC-based spectrum access strategy can help the SU to significantly reduce the chances of collision with PUs and other SUs. We also show that our scheme outperforms the myopic method which assumes the knowledge of system statistics, and converges faster than the Q-learning method when the number of channels is large." @default.
- W2894110571 created "2018-10-05" @default.
- W2894110571 creator A5015266516 @default.
- W2894110571 creator A5018632091 @default.
- W2894110571 creator A5027237940 @default.
- W2894110571 creator A5057879702 @default.
- W2894110571 creator A5067687694 @default.
- W2894110571 creator A5077063251 @default.
- W2894110571 date "2019-04-01" @default.
- W2894110571 modified "2023-10-09" @default.
- W2894110571 title "Distributive Dynamic Spectrum Access Through Deep Reinforcement Learning: A Reservoir Computing-Based Approach" @default.
- W2894110571 cites W1509061701 @default.
- W2894110571 cites W1965842222 @default.
- W2894110571 cites W1992901836 @default.
- W2894110571 cites W2021913755 @default.
- W2894110571 cites W2054217036 @default.
- W2894110571 cites W2067431740 @default.
- W2894110571 cites W2095843437 @default.
- W2894110571 cites W2107878631 @default.
- W2894110571 cites W2108407796 @default.
- W2894110571 cites W2144776022 @default.
- W2894110571 cites W2145339207 @default.
- W2894110571 cites W2150175499 @default.
- W2894110571 cites W2159767430 @default.
- W2894110571 cites W2161815172 @default.
- W2894110571 cites W2171865010 @default.
- W2894110571 cites W2294176879 @default.
- W2894110571 cites W2414006382 @default.
- W2894110571 cites W2505036611 @default.
- W2894110571 cites W2612336410 @default.
- W2894110571 cites W2613882223 @default.
- W2894110571 cites W2766391153 @default.
- W2894110571 cites W2773810651 @default.
- W2894110571 cites W2962850461 @default.
- W2894110571 cites W2963079995 @default.
- W2894110571 cites W32403112 @default.
- W2894110571 doi "https://doi.org/10.1109/jiot.2018.2872441" @default.
- W2894110571 hasPublicationYear "2019" @default.
- W2894110571 type Work @default.
- W2894110571 sameAs 2894110571 @default.
- W2894110571 citedByCount "125" @default.
- W2894110571 countsByYear W28941105712018 @default.
- W2894110571 countsByYear W28941105712019 @default.
- W2894110571 countsByYear W28941105712020 @default.
- W2894110571 countsByYear W28941105712021 @default.
- W2894110571 countsByYear W28941105712022 @default.
- W2894110571 countsByYear W28941105712023 @default.
- W2894110571 crossrefType "journal-article" @default.
- W2894110571 hasAuthorship W2894110571A5015266516 @default.
- W2894110571 hasAuthorship W2894110571A5018632091 @default.
- W2894110571 hasAuthorship W2894110571A5027237940 @default.
- W2894110571 hasAuthorship W2894110571A5057879702 @default.
- W2894110571 hasAuthorship W2894110571A5067687694 @default.
- W2894110571 hasAuthorship W2894110571A5077063251 @default.
- W2894110571 hasBestOaLocation W28941105711 @default.
- W2894110571 hasConcept C11821877 @default.
- W2894110571 hasConcept C120314980 @default.
- W2894110571 hasConcept C127162648 @default.
- W2894110571 hasConcept C147168706 @default.
- W2894110571 hasConcept C149946192 @default.
- W2894110571 hasConcept C154945302 @default.
- W2894110571 hasConcept C202444582 @default.
- W2894110571 hasConcept C31258907 @default.
- W2894110571 hasConcept C32022120 @default.
- W2894110571 hasConcept C33923547 @default.
- W2894110571 hasConcept C41008148 @default.
- W2894110571 hasConcept C50644808 @default.
- W2894110571 hasConcept C555944384 @default.
- W2894110571 hasConcept C63029442 @default.
- W2894110571 hasConcept C76155785 @default.
- W2894110571 hasConcept C97541855 @default.
- W2894110571 hasConceptScore W2894110571C11821877 @default.
- W2894110571 hasConceptScore W2894110571C120314980 @default.
- W2894110571 hasConceptScore W2894110571C127162648 @default.
- W2894110571 hasConceptScore W2894110571C147168706 @default.
- W2894110571 hasConceptScore W2894110571C149946192 @default.
- W2894110571 hasConceptScore W2894110571C154945302 @default.
- W2894110571 hasConceptScore W2894110571C202444582 @default.
- W2894110571 hasConceptScore W2894110571C31258907 @default.
- W2894110571 hasConceptScore W2894110571C32022120 @default.
- W2894110571 hasConceptScore W2894110571C33923547 @default.
- W2894110571 hasConceptScore W2894110571C41008148 @default.
- W2894110571 hasConceptScore W2894110571C50644808 @default.
- W2894110571 hasConceptScore W2894110571C555944384 @default.
- W2894110571 hasConceptScore W2894110571C63029442 @default.
- W2894110571 hasConceptScore W2894110571C76155785 @default.
- W2894110571 hasConceptScore W2894110571C97541855 @default.
- W2894110571 hasFunder F4320306076 @default.
- W2894110571 hasIssue "2" @default.
- W2894110571 hasLocation W28941105711 @default.
- W2894110571 hasLocation W28941105712 @default.
- W2894110571 hasOpenAccess W2894110571 @default.
- W2894110571 hasPrimaryLocation W28941105711 @default.
- W2894110571 hasRelatedWork W2012984027 @default.
- W2894110571 hasRelatedWork W2019662070 @default.
- W2894110571 hasRelatedWork W2060252583 @default.
- W2894110571 hasRelatedWork W2143080255 @default.
- W2894110571 hasRelatedWork W2163905491 @default.