Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894202216> ?p ?o ?g. }
- W2894202216 abstract "In the context of a high-dimensional linear regression model, we propose the use of an empirical correlation-adaptive prior that makes use of information in the observed predictor variable matrix to adaptively address high collinearity, determining if parameters associated with correlated predictors should be shrunk together or kept apart. Under suitable conditions, we prove that this empirical Bayes posterior concentrates around the true sparse parameter at the optimal rate asymptotically. A simplified version of a shotgun stochastic search algorithm is employed to implement the variable selection procedure, and we show, via simulation experiments across different settings and a real-data application, the favorable performance of the proposed method compared to existing methods." @default.
- W2894202216 created "2018-10-05" @default.
- W2894202216 creator A5026217652 @default.
- W2894202216 creator A5040242807 @default.
- W2894202216 creator A5047493332 @default.
- W2894202216 creator A5081850677 @default.
- W2894202216 date "2018-10-01" @default.
- W2894202216 modified "2023-09-27" @default.
- W2894202216 title "Bayesian inference in high-dimensional linear models using an empirical correlation-adaptive prior" @default.
- W2894202216 cites W1243940979 @default.
- W2894202216 cites W1923906081 @default.
- W2894202216 cites W1985593448 @default.
- W2894202216 cites W1986783130 @default.
- W2894202216 cites W1988930747 @default.
- W2894202216 cites W2007069447 @default.
- W2894202216 cites W2011471859 @default.
- W2894202216 cites W2020389170 @default.
- W2894202216 cites W2020925091 @default.
- W2894202216 cites W2043118903 @default.
- W2894202216 cites W2054100651 @default.
- W2894202216 cites W2074682976 @default.
- W2894202216 cites W2081839634 @default.
- W2894202216 cites W2084089095 @default.
- W2894202216 cites W2122825543 @default.
- W2894202216 cites W2135046866 @default.
- W2894202216 cites W2147848557 @default.
- W2894202216 cites W2169103656 @default.
- W2894202216 cites W2560068110 @default.
- W2894202216 cites W2962704566 @default.
- W2894202216 cites W2962894765 @default.
- W2894202216 cites W3100041486 @default.
- W2894202216 cites W3102055739 @default.
- W2894202216 cites W3103712593 @default.
- W2894202216 cites W3104393726 @default.
- W2894202216 cites W340056678 @default.
- W2894202216 hasPublicationYear "2018" @default.
- W2894202216 type Work @default.
- W2894202216 sameAs 2894202216 @default.
- W2894202216 citedByCount "5" @default.
- W2894202216 countsByYear W28942022162017 @default.
- W2894202216 countsByYear W28942022162019 @default.
- W2894202216 countsByYear W28942022162020 @default.
- W2894202216 countsByYear W28942022162021 @default.
- W2894202216 crossrefType "posted-content" @default.
- W2894202216 hasAuthorship W2894202216A5026217652 @default.
- W2894202216 hasAuthorship W2894202216A5040242807 @default.
- W2894202216 hasAuthorship W2894202216A5047493332 @default.
- W2894202216 hasAuthorship W2894202216A5081850677 @default.
- W2894202216 hasConcept C105795698 @default.
- W2894202216 hasConcept C106192678 @default.
- W2894202216 hasConcept C107673813 @default.
- W2894202216 hasConcept C11413529 @default.
- W2894202216 hasConcept C119857082 @default.
- W2894202216 hasConcept C134306372 @default.
- W2894202216 hasConcept C148483581 @default.
- W2894202216 hasConcept C151730666 @default.
- W2894202216 hasConcept C154945302 @default.
- W2894202216 hasConcept C160234255 @default.
- W2894202216 hasConcept C182365436 @default.
- W2894202216 hasConcept C203233044 @default.
- W2894202216 hasConcept C207201462 @default.
- W2894202216 hasConcept C2776214188 @default.
- W2894202216 hasConcept C2779343474 @default.
- W2894202216 hasConcept C33923547 @default.
- W2894202216 hasConcept C41008148 @default.
- W2894202216 hasConcept C48921125 @default.
- W2894202216 hasConcept C86803240 @default.
- W2894202216 hasConceptScore W2894202216C105795698 @default.
- W2894202216 hasConceptScore W2894202216C106192678 @default.
- W2894202216 hasConceptScore W2894202216C107673813 @default.
- W2894202216 hasConceptScore W2894202216C11413529 @default.
- W2894202216 hasConceptScore W2894202216C119857082 @default.
- W2894202216 hasConceptScore W2894202216C134306372 @default.
- W2894202216 hasConceptScore W2894202216C148483581 @default.
- W2894202216 hasConceptScore W2894202216C151730666 @default.
- W2894202216 hasConceptScore W2894202216C154945302 @default.
- W2894202216 hasConceptScore W2894202216C160234255 @default.
- W2894202216 hasConceptScore W2894202216C182365436 @default.
- W2894202216 hasConceptScore W2894202216C203233044 @default.
- W2894202216 hasConceptScore W2894202216C207201462 @default.
- W2894202216 hasConceptScore W2894202216C2776214188 @default.
- W2894202216 hasConceptScore W2894202216C2779343474 @default.
- W2894202216 hasConceptScore W2894202216C33923547 @default.
- W2894202216 hasConceptScore W2894202216C41008148 @default.
- W2894202216 hasConceptScore W2894202216C48921125 @default.
- W2894202216 hasConceptScore W2894202216C86803240 @default.
- W2894202216 hasLocation W28942022161 @default.
- W2894202216 hasOpenAccess W2894202216 @default.
- W2894202216 hasPrimaryLocation W28942022161 @default.
- W2894202216 hasRelatedWork W1788616518 @default.
- W2894202216 hasRelatedWork W1939894768 @default.
- W2894202216 hasRelatedWork W2114169935 @default.
- W2894202216 hasRelatedWork W2521517411 @default.
- W2894202216 hasRelatedWork W2591874138 @default.
- W2894202216 hasRelatedWork W2627405782 @default.
- W2894202216 hasRelatedWork W2786129266 @default.
- W2894202216 hasRelatedWork W2883429840 @default.
- W2894202216 hasRelatedWork W2884914399 @default.
- W2894202216 hasRelatedWork W2885295414 @default.
- W2894202216 hasRelatedWork W2904421986 @default.