Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894215319> ?p ?o ?g. }
- W2894215319 endingPage "212" @default.
- W2894215319 startingPage "191" @default.
- W2894215319 abstract "At equilibrium, the D/H isotope fractionation factor between H2 and H2O (αH2O-H2(eq)) is a sensitive indicator of temperature, and has been used as a geothermometer for natural springs and gas discharges. However, δDH2 measured in spring waters may underestimate subsurface temperatures of origin due to partial isotopic re-equilibration during ascent and cooling. We present new experimental data on the kinetics of D–H exchange for H2 dissolved in liquid water at temperatures below 100 °C. Comparing these results with published exchange rates obtained from gas phase experiments (100–400 °C), we derive a consistent activation energy of 52 kJ/mol, and the following rate expressions;lnk=9.186-6298/Tandk1=9764.61[H2O]e-6298/Twhere T is absolute temperature (K), k is the universal rate constant ([L/mol]/hr), and k1 is a pseudo-first-order constant (hr−1) applicable to water-dominated terrestrial systems by constraining [H2O] as the density of H2O (in mol/L) at the P-T of interest. The density-dependent rate constant accounts for the kinetic disparity of D–H exchange with H2 when dissolved in liquid H2O relative to a gas/steam phase, exemplifed by 1/k1 at 100 °C of ∼2 days in liquid, versus ∼7 yrs in saturated steam. This difference may explain the high variability of δDH2 observed in fumarolic gases. Fluids convecting in the crust frequently reach T > 225 °C, where isotopic equilibrium is rapidly attained (<1 hr). We compare fractionation factors measured in natural fluids (αOBS) with values expected for equilibrium at the T of acquisition. Where these values differ, we use kinetic models to estimate cooling rates during upward advection that account for the observed disequilibrium. Models fit to fluids from Yellowstone Park and the Lost City (deep-sea) vent field, both recovered at ∼90 °C, require respective transit times of ∼7 hrs and ∼11 days between higher temperature reaction zones and the surface. Using estimates of subsurface depths of origin, however, suggests similar mean fluid flow rates (10 s of meters/hr). Additional complications must be considered when interpreting the δDH2 of lower-temperature effluent. When applied to data from deep-sea hydrothermal systems, our kinetic models indicate microbial catalysis accelerates D–H exchange once fluids cool below ∼60 °C. The H2 measured in both continental alkaline springs and fracture fluids from Precambrian shield rock is likely produced at T < 100 °C, through processes such as serpentinization. In these settings, δDH2 values appear closer to equilibrium with H2O than those from geothermal systems. Considering kinetic isotope effects may yield H2 that is out of equilibrium when generated at lower temperatures, we calculate maximum (isothermal) times to apparent isotopic equilibrium of 1.3 yrs at 50 °C, 9 yrs at 25 °C, and 35 yrs at 10 °C. A similar calculation applied to Antarctic brines (−13 °C), where measured δDH2 is far from equilibrium, yields ∼350 yrs. This time is shorter than the fluids have been isolated (2.8 ka), suggesting kinetic isotope effects associated with H2 destruction or loss via diffusion may also be possible." @default.
- W2894215319 created "2018-10-05" @default.
- W2894215319 creator A5011271995 @default.
- W2894215319 creator A5020867119 @default.
- W2894215319 creator A5035484376 @default.
- W2894215319 creator A5044141858 @default.
- W2894215319 date "2018-12-01" @default.
- W2894215319 modified "2023-10-15" @default.
- W2894215319 title "Kinetics of D/H isotope fractionation between molecular hydrogen and water" @default.
- W2894215319 cites W1487386050 @default.
- W2894215319 cites W1489938111 @default.
- W2894215319 cites W1491740764 @default.
- W2894215319 cites W1563105721 @default.
- W2894215319 cites W1568241217 @default.
- W2894215319 cites W1568387307 @default.
- W2894215319 cites W1589239329 @default.
- W2894215319 cites W1607885691 @default.
- W2894215319 cites W1607993723 @default.
- W2894215319 cites W1664251112 @default.
- W2894215319 cites W1819230068 @default.
- W2894215319 cites W1849376237 @default.
- W2894215319 cites W1902589038 @default.
- W2894215319 cites W1916836139 @default.
- W2894215319 cites W1964199416 @default.
- W2894215319 cites W1966033101 @default.
- W2894215319 cites W1967095514 @default.
- W2894215319 cites W1967670518 @default.
- W2894215319 cites W1971574351 @default.
- W2894215319 cites W1971956559 @default.
- W2894215319 cites W1973221312 @default.
- W2894215319 cites W1973982884 @default.
- W2894215319 cites W1974442790 @default.
- W2894215319 cites W1975682364 @default.
- W2894215319 cites W1976573212 @default.
- W2894215319 cites W1976810150 @default.
- W2894215319 cites W1977947860 @default.
- W2894215319 cites W1978440536 @default.
- W2894215319 cites W1979069524 @default.
- W2894215319 cites W1981979499 @default.
- W2894215319 cites W1982283598 @default.
- W2894215319 cites W1982894212 @default.
- W2894215319 cites W1983782186 @default.
- W2894215319 cites W1985094052 @default.
- W2894215319 cites W1985290958 @default.
- W2894215319 cites W1986119055 @default.
- W2894215319 cites W1988351418 @default.
- W2894215319 cites W1988541203 @default.
- W2894215319 cites W1990732046 @default.
- W2894215319 cites W1990823161 @default.
- W2894215319 cites W1992992456 @default.
- W2894215319 cites W1994533043 @default.
- W2894215319 cites W1994874475 @default.
- W2894215319 cites W2006048429 @default.
- W2894215319 cites W2007536876 @default.
- W2894215319 cites W2010469397 @default.
- W2894215319 cites W2011974553 @default.
- W2894215319 cites W2012632535 @default.
- W2894215319 cites W2014067713 @default.
- W2894215319 cites W2014197739 @default.
- W2894215319 cites W2014572864 @default.
- W2894215319 cites W2014892075 @default.
- W2894215319 cites W2019017051 @default.
- W2894215319 cites W2019490563 @default.
- W2894215319 cites W2020444159 @default.
- W2894215319 cites W2020892853 @default.
- W2894215319 cites W2022170035 @default.
- W2894215319 cites W2024087677 @default.
- W2894215319 cites W2024349823 @default.
- W2894215319 cites W2024598634 @default.
- W2894215319 cites W2026909634 @default.
- W2894215319 cites W2027622373 @default.
- W2894215319 cites W2028603122 @default.
- W2894215319 cites W2029095556 @default.
- W2894215319 cites W2029254382 @default.
- W2894215319 cites W2031143382 @default.
- W2894215319 cites W2032290499 @default.
- W2894215319 cites W2033676667 @default.
- W2894215319 cites W2034051990 @default.
- W2894215319 cites W2035673146 @default.
- W2894215319 cites W2036323453 @default.
- W2894215319 cites W2037573128 @default.
- W2894215319 cites W2037967722 @default.
- W2894215319 cites W2038788794 @default.
- W2894215319 cites W2039066042 @default.
- W2894215319 cites W2040502433 @default.
- W2894215319 cites W2041528419 @default.
- W2894215319 cites W2041532412 @default.
- W2894215319 cites W2042558174 @default.
- W2894215319 cites W2043787408 @default.
- W2894215319 cites W2044127701 @default.
- W2894215319 cites W2045469782 @default.
- W2894215319 cites W2045712267 @default.
- W2894215319 cites W2045716070 @default.
- W2894215319 cites W2046471576 @default.
- W2894215319 cites W2046812128 @default.
- W2894215319 cites W2046987519 @default.
- W2894215319 cites W2047260225 @default.
- W2894215319 cites W2048649130 @default.