Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894218174> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2894218174 abstract "Abstract A method of digital image and odor information processing has been proposed by integrating computer vision and colorimetric sensor array (CSA) for rapid and accurate evaluation of mango quality. Wholesome mango fruits, about 70–80% maturity were procured and stored in a constant temperature‐humidity chamber, 12 ± 0.5°C and 85–90%, respectively. Hardness and Total Soluble Solid (TSS) of the mango samples were measured by both conventional techniques and new nondestructive method developed combing computer vision and CSA. All data were analyzed using principal component analysis to reduce dimensionality. Support vector classification (SVC) models were established for qualitative discrimination of mango quality. Moreover, support vector regression (SVR) was applied to indicate the relationship between results got from nondestructive methods and conventional methods. SVC model was used to classify mango samples into three grades, the accuracy rates were 98.75 and 97.5% for the training and prediction sets, respectively. The SVR correlation coefficients for hardness were 0.9051 and 0.8897 for the training and prediction sets, respectively, and 0.9515 and 0.9241 for training set and prediction sets, respectively, in respect of TSS. Results showed that it is feasible to predict hardness and TSS of mango by the combination of computer vision and CSA. Practical applications Mango ( Mangifera indica L.) is one of the world's famous tropical fruits and enjoys the reputation of “tropical fruit king.” Mango is considered a climacteric fruit because during ripening it displays a surge of respiration and ethylene production which tends to hasten the ripening process. To keep the mango fruit fresh, it is very important to monitor the quality during transportation and storage. In this study, an innovative approach was developed, in which computer vision and colorimetric sensor array (CSA) were employed simultaneously to get more accurate result. This method simplified detection steps and shorten the detection time. The results showed that the integration of computer vision and CSA could serve as a rapid nondestructive testing method for mango quality detection. The method can be applied for rapid detection of mango products by both government department and food company." @default.
- W2894218174 created "2018-10-05" @default.
- W2894218174 creator A5000097220 @default.
- W2894218174 creator A5038742741 @default.
- W2894218174 creator A5063713890 @default.
- W2894218174 creator A5075212218 @default.
- W2894218174 creator A5076950025 @default.
- W2894218174 date "2018-09-27" @default.
- W2894218174 modified "2023-09-25" @default.
- W2894218174 title "Integration of computer vision and colorimetric sensor array for nondestructive detection of mango quality" @default.
- W2894218174 cites W1506767743 @default.
- W2894218174 cites W1976737406 @default.
- W2894218174 cites W1980261579 @default.
- W2894218174 cites W1990324775 @default.
- W2894218174 cites W2001318726 @default.
- W2894218174 cites W2024360923 @default.
- W2894218174 cites W2065286382 @default.
- W2894218174 cites W2069262297 @default.
- W2894218174 cites W2081132469 @default.
- W2894218174 cites W2083644298 @default.
- W2894218174 cites W2294127639 @default.
- W2894218174 cites W2296584679 @default.
- W2894218174 cites W2304001889 @default.
- W2894218174 cites W2384494701 @default.
- W2894218174 cites W2570180499 @default.
- W2894218174 cites W2602322415 @default.
- W2894218174 cites W2613549517 @default.
- W2894218174 cites W2683302523 @default.
- W2894218174 doi "https://doi.org/10.1111/jfpe.12873" @default.
- W2894218174 hasPublicationYear "2018" @default.
- W2894218174 type Work @default.
- W2894218174 sameAs 2894218174 @default.
- W2894218174 citedByCount "12" @default.
- W2894218174 countsByYear W28942181742019 @default.
- W2894218174 countsByYear W28942181742020 @default.
- W2894218174 countsByYear W28942181742021 @default.
- W2894218174 countsByYear W28942181742022 @default.
- W2894218174 countsByYear W28942181742023 @default.
- W2894218174 crossrefType "journal-article" @default.
- W2894218174 hasAuthorship W2894218174A5000097220 @default.
- W2894218174 hasAuthorship W2894218174A5038742741 @default.
- W2894218174 hasAuthorship W2894218174A5063713890 @default.
- W2894218174 hasAuthorship W2894218174A5075212218 @default.
- W2894218174 hasAuthorship W2894218174A5076950025 @default.
- W2894218174 hasConcept C12267149 @default.
- W2894218174 hasConcept C144027150 @default.
- W2894218174 hasConcept C153180895 @default.
- W2894218174 hasConcept C154945302 @default.
- W2894218174 hasConcept C172353545 @default.
- W2894218174 hasConcept C198454886 @default.
- W2894218174 hasConcept C27438332 @default.
- W2894218174 hasConcept C2778562196 @default.
- W2894218174 hasConcept C2781429666 @default.
- W2894218174 hasConcept C33923547 @default.
- W2894218174 hasConcept C41008148 @default.
- W2894218174 hasConcept C54355233 @default.
- W2894218174 hasConcept C86803240 @default.
- W2894218174 hasConceptScore W2894218174C12267149 @default.
- W2894218174 hasConceptScore W2894218174C144027150 @default.
- W2894218174 hasConceptScore W2894218174C153180895 @default.
- W2894218174 hasConceptScore W2894218174C154945302 @default.
- W2894218174 hasConceptScore W2894218174C172353545 @default.
- W2894218174 hasConceptScore W2894218174C198454886 @default.
- W2894218174 hasConceptScore W2894218174C27438332 @default.
- W2894218174 hasConceptScore W2894218174C2778562196 @default.
- W2894218174 hasConceptScore W2894218174C2781429666 @default.
- W2894218174 hasConceptScore W2894218174C33923547 @default.
- W2894218174 hasConceptScore W2894218174C41008148 @default.
- W2894218174 hasConceptScore W2894218174C54355233 @default.
- W2894218174 hasConceptScore W2894218174C86803240 @default.
- W2894218174 hasFunder F4320321001 @default.
- W2894218174 hasIssue "8" @default.
- W2894218174 hasLocation W28942181741 @default.
- W2894218174 hasOpenAccess W2894218174 @default.
- W2894218174 hasPrimaryLocation W28942181741 @default.
- W2894218174 hasRelatedWork W1579270119 @default.
- W2894218174 hasRelatedWork W1968990561 @default.
- W2894218174 hasRelatedWork W2050790931 @default.
- W2894218174 hasRelatedWork W2053307733 @default.
- W2894218174 hasRelatedWork W2380927352 @default.
- W2894218174 hasRelatedWork W2570180499 @default.
- W2894218174 hasRelatedWork W2958702969 @default.
- W2894218174 hasRelatedWork W3204747036 @default.
- W2894218174 hasRelatedWork W4293160818 @default.
- W2894218174 hasRelatedWork W4299734842 @default.
- W2894218174 hasVolume "41" @default.
- W2894218174 isParatext "false" @default.
- W2894218174 isRetracted "false" @default.
- W2894218174 magId "2894218174" @default.
- W2894218174 workType "article" @default.