Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894300437> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2894300437 endingPage "264" @default.
- W2894300437 startingPage "256" @default.
- W2894300437 abstract "Graph-based multi-view feature extraction has attracted much attention in literature. However, conventional solutions generally rely on a manually defined affinity graph matrix, which is hard to capture the intrinsic sample relations in multiple views. In addition, the graph construction and feature extraction are separated into two independent processes which may result in sub-optimal results. Furthermore, the raw data may contain adverse noises that reduces the reliability of the affinity matrix. In this paper, we propose a novel Unsupervised Multi-view Feature Extraction with Dynamic Graph Learning (UMFE-DGL) to solve these limitations. We devise a unified learning framework which simultaneously performs dynamic graph learning and the feature extraction. Dynamic graph learning adaptively captures the intrinsic multiple view-specific relations of samples. Feature extraction learns the projection matrix that could accordingly preserve the dynamically adjusted sample relations modelled by graph into the low-dimensional features. Experimental results on several public datasets demonstrate the superior performance of the proposed approach, compared with state-of-the-art techniques." @default.
- W2894300437 created "2018-10-05" @default.
- W2894300437 creator A5036777291 @default.
- W2894300437 creator A5038599874 @default.
- W2894300437 creator A5051630734 @default.
- W2894300437 creator A5068843001 @default.
- W2894300437 creator A5090819151 @default.
- W2894300437 date "2018-10-01" @default.
- W2894300437 modified "2023-10-02" @default.
- W2894300437 title "Unsupervised multi-view feature extraction with dynamic graph learning" @default.
- W2894300437 cites W1566135517 @default.
- W2894300437 cites W1595717062 @default.
- W2894300437 cites W1847551302 @default.
- W2894300437 cites W2001141328 @default.
- W2894300437 cites W2005646316 @default.
- W2894300437 cites W2020883660 @default.
- W2894300437 cites W2051285356 @default.
- W2894300437 cites W2053186076 @default.
- W2894300437 cites W2072750214 @default.
- W2894300437 cites W2089468765 @default.
- W2894300437 cites W2090861223 @default.
- W2894300437 cites W2134529554 @default.
- W2894300437 cites W2151103935 @default.
- W2894300437 cites W2165846633 @default.
- W2894300437 cites W2166049352 @default.
- W2894300437 cites W2166782149 @default.
- W2894300437 cites W2482567233 @default.
- W2894300437 cites W2524482439 @default.
- W2894300437 cites W2566349545 @default.
- W2894300437 cites W2604723872 @default.
- W2894300437 cites W2735033384 @default.
- W2894300437 cites W2739103128 @default.
- W2894300437 cites W2739107216 @default.
- W2894300437 cites W2740036143 @default.
- W2894300437 cites W2742050142 @default.
- W2894300437 cites W2751253323 @default.
- W2894300437 cites W2752930373 @default.
- W2894300437 cites W2780100774 @default.
- W2894300437 cites W2781821509 @default.
- W2894300437 cites W2790640759 @default.
- W2894300437 cites W2801477643 @default.
- W2894300437 cites W2803620531 @default.
- W2894300437 cites W2808219330 @default.
- W2894300437 cites W2887712318 @default.
- W2894300437 cites W2963634791 @default.
- W2894300437 cites W3148981562 @default.
- W2894300437 doi "https://doi.org/10.1016/j.jvcir.2018.09.019" @default.
- W2894300437 hasPublicationYear "2018" @default.
- W2894300437 type Work @default.
- W2894300437 sameAs 2894300437 @default.
- W2894300437 citedByCount "28" @default.
- W2894300437 countsByYear W28943004372019 @default.
- W2894300437 countsByYear W28943004372020 @default.
- W2894300437 countsByYear W28943004372021 @default.
- W2894300437 countsByYear W28943004372022 @default.
- W2894300437 countsByYear W28943004372023 @default.
- W2894300437 crossrefType "journal-article" @default.
- W2894300437 hasAuthorship W2894300437A5036777291 @default.
- W2894300437 hasAuthorship W2894300437A5038599874 @default.
- W2894300437 hasAuthorship W2894300437A5051630734 @default.
- W2894300437 hasAuthorship W2894300437A5068843001 @default.
- W2894300437 hasAuthorship W2894300437A5090819151 @default.
- W2894300437 hasConcept C119857082 @default.
- W2894300437 hasConcept C132525143 @default.
- W2894300437 hasConcept C153180895 @default.
- W2894300437 hasConcept C154945302 @default.
- W2894300437 hasConcept C41008148 @default.
- W2894300437 hasConcept C52622490 @default.
- W2894300437 hasConcept C80444323 @default.
- W2894300437 hasConceptScore W2894300437C119857082 @default.
- W2894300437 hasConceptScore W2894300437C132525143 @default.
- W2894300437 hasConceptScore W2894300437C153180895 @default.
- W2894300437 hasConceptScore W2894300437C154945302 @default.
- W2894300437 hasConceptScore W2894300437C41008148 @default.
- W2894300437 hasConceptScore W2894300437C52622490 @default.
- W2894300437 hasConceptScore W2894300437C80444323 @default.
- W2894300437 hasFunder F4320321001 @default.
- W2894300437 hasLocation W28943004371 @default.
- W2894300437 hasOpenAccess W2894300437 @default.
- W2894300437 hasPrimaryLocation W28943004371 @default.
- W2894300437 hasRelatedWork W1964120219 @default.
- W2894300437 hasRelatedWork W2000165426 @default.
- W2894300437 hasRelatedWork W2114557664 @default.
- W2894300437 hasRelatedWork W2144059113 @default.
- W2894300437 hasRelatedWork W2146076056 @default.
- W2894300437 hasRelatedWork W2385132419 @default.
- W2894300437 hasRelatedWork W2772780115 @default.
- W2894300437 hasRelatedWork W2811390910 @default.
- W2894300437 hasRelatedWork W2942471066 @default.
- W2894300437 hasRelatedWork W3003836766 @default.
- W2894300437 hasVolume "56" @default.
- W2894300437 isParatext "false" @default.
- W2894300437 isRetracted "false" @default.
- W2894300437 magId "2894300437" @default.
- W2894300437 workType "article" @default.