Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894310699> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2894310699 abstract "Zinc oxide (ZnO) has been widely deployed as electron conducting layer in emerging photovoltaics including quantum dot, perovskite and organic solar cells. Reducing the curing temperature of ZnO layer to below 200 oC is an essential requirement to reduce the cell fabrication cost enabled by large-scale processes such as ink-jet printing, spin coating or roll-roll printing. Herein, we present a novel water-based ZnO precursor stabilized with labile NH3, which allow us to spin coat crystalline ZnO thin films with temperatures below 200 oC. Thin film transistors (TFTs) and diode-type quantum dot solar cells (QD SCs) were fabricated using ZnO as electron conduction layer. In the QD SCs, a p-type 1,2-ethylenedithiol treated PbS QDs with a bandgap of 1.4 eV was spin-coated on top of ZnO layer by a layer-by-layer solid state ligand exchange process. Electron mobility of ZnO was about 0.1 cm2V-1s-1 as determined from TFT measurements. Power conversion efficiency of solar cells: FTO/ZnO/PbS/Au-Ag was 3.0% under AM1.5 irradiation conditions. The possibility of deposition of ZnO at low temperatures demonstrated herein is of important for solution processed electronic and optoelectronic devices. 
 Keywords
 ZnO, low-temperature, quantum dots, solar cells, TFTs
 References
 [1] A. Janotti, A. Janotti, C.G. Van De Walle-fundamental of ZnO as a semiconductor, Reports on Progress in Physics, 72 (2009) 126501.[2] H. You, Y. Lin-investigation of the sol-gel method on the flexible ZnO device, International Journal of Electrochemical Science, 7 (2012) 9085–9094.[3] Y. Lin, C. Hsu, M. Tseng, J. Shyue, F. Tsai-stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition, Applied Materials &Interfaces, 7(40) (2015) 22610–22617.[4] C. Lin, S. Tsai, M. Chang-Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells, Organic Electronics, 46 (2017) 218-255.[5] H. Park, I. Ryu, J. Kim, S. Jeong, S. Yim, S. Jang-PbS quantum dot solar cells integrated with sol−gel-derived ZnO as an n‑type charge-selective layer, Journal of Physical Chemistry C, 118(2014) 17374−17382.[6] Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger-inverted polymer solar cells integrated with a low- temperature-annealed sol-gel-derived ZnO film as an electron transport layer Advanced Materials, 23(2011) 1679–1683.[7] V.A. Online, R. Suriano, C. Bianchi, M. Levi, S. Turri, G. Griffini-the role of sol-gel chemistry in low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance, RSC Advances, 6(2016) 46915-46924.[8] X. D. Mai, J. An, H. Song, J. Jang-inverted Schottky quantum dot solar cells with enhanced carrier extraction and air-stability, Journal of Materials Chemistry A, 2 (2014) 20799–20805.[9] H. Choi, J. Lee, X.D. Mai, M.C. Beard, S.S. Yoon, S. Jeong - supersonically spray-coated colloidal quantum dot ink solar cells, Scientific Report, 7(2017) 622.[10] C.R. Newman, C.D. Frisbie, A. Demetrio, S. Filho, J. Bre- introduction to organic thin film transistors and design of n-channel organic semiconductors, Chemistry Materials, 16(2004) 4436-4451.[11] M. Asad, N. Abdul, Chapter 9: Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications, in Recent Applications in Sol-Gel Synthesis, Edt:C. Usha. InTech, Rijeka, Croatia, 2017. [12] D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, K. Kato, Low-temperature preparation of (002)-oriented ZnO thin films by sol–gel method, Thin Solid Films, 550 (2014), 250-258. [13] S. T. Meyers, J. T. Anderson, C. M. Hung, J. Thompson, J. F. Wager, D. A. Keszler, Aqueous Inorganic Inks for Low-Temperature Fabrication of ZnO TFTs, J. Am. Chem. Soc, 130 (2008), 17603-17609." @default.
- W2894310699 created "2018-10-05" @default.
- W2894310699 creator A5010165793 @default.
- W2894310699 creator A5013073126 @default.
- W2894310699 creator A5017010036 @default.
- W2894310699 creator A5022479291 @default.
- W2894310699 creator A5025575688 @default.
- W2894310699 creator A5050575288 @default.
- W2894310699 creator A5058279437 @default.
- W2894310699 creator A5071076488 @default.
- W2894310699 date "2018-09-24" @default.
- W2894310699 modified "2023-09-26" @default.
- W2894310699 title "Low-Temperature ZnO Thin Film and Its Application in PbS Quantum Dot Solar Cells" @default.
- W2894310699 doi "https://doi.org/10.25073/2588-1140/vnunst.4788" @default.
- W2894310699 hasPublicationYear "2018" @default.
- W2894310699 type Work @default.
- W2894310699 sameAs 2894310699 @default.
- W2894310699 citedByCount "0" @default.
- W2894310699 crossrefType "journal-article" @default.
- W2894310699 hasAuthorship W2894310699A5010165793 @default.
- W2894310699 hasAuthorship W2894310699A5013073126 @default.
- W2894310699 hasAuthorship W2894310699A5017010036 @default.
- W2894310699 hasAuthorship W2894310699A5022479291 @default.
- W2894310699 hasAuthorship W2894310699A5025575688 @default.
- W2894310699 hasAuthorship W2894310699A5050575288 @default.
- W2894310699 hasAuthorship W2894310699A5058279437 @default.
- W2894310699 hasAuthorship W2894310699A5071076488 @default.
- W2894310699 hasBestOaLocation W28943106991 @default.
- W2894310699 hasConcept C108225325 @default.
- W2894310699 hasConcept C115196108 @default.
- W2894310699 hasConcept C119599485 @default.
- W2894310699 hasConcept C124657808 @default.
- W2894310699 hasConcept C127413603 @default.
- W2894310699 hasConcept C171250308 @default.
- W2894310699 hasConcept C181966813 @default.
- W2894310699 hasConcept C19067145 @default.
- W2894310699 hasConcept C192562407 @default.
- W2894310699 hasConcept C2778357024 @default.
- W2894310699 hasConcept C2780824857 @default.
- W2894310699 hasConcept C41291067 @default.
- W2894310699 hasConcept C49040817 @default.
- W2894310699 hasConcept C542589376 @default.
- W2894310699 hasConceptScore W2894310699C108225325 @default.
- W2894310699 hasConceptScore W2894310699C115196108 @default.
- W2894310699 hasConceptScore W2894310699C119599485 @default.
- W2894310699 hasConceptScore W2894310699C124657808 @default.
- W2894310699 hasConceptScore W2894310699C127413603 @default.
- W2894310699 hasConceptScore W2894310699C171250308 @default.
- W2894310699 hasConceptScore W2894310699C181966813 @default.
- W2894310699 hasConceptScore W2894310699C19067145 @default.
- W2894310699 hasConceptScore W2894310699C192562407 @default.
- W2894310699 hasConceptScore W2894310699C2778357024 @default.
- W2894310699 hasConceptScore W2894310699C2780824857 @default.
- W2894310699 hasConceptScore W2894310699C41291067 @default.
- W2894310699 hasConceptScore W2894310699C49040817 @default.
- W2894310699 hasConceptScore W2894310699C542589376 @default.
- W2894310699 hasLocation W28943106991 @default.
- W2894310699 hasOpenAccess W2894310699 @default.
- W2894310699 hasPrimaryLocation W28943106991 @default.
- W2894310699 hasRelatedWork W1574806982 @default.
- W2894310699 hasRelatedWork W2011102046 @default.
- W2894310699 hasRelatedWork W2090692868 @default.
- W2894310699 hasRelatedWork W2132558040 @default.
- W2894310699 hasRelatedWork W2327270005 @default.
- W2894310699 hasRelatedWork W2328817332 @default.
- W2894310699 hasRelatedWork W2594210984 @default.
- W2894310699 hasRelatedWork W2998520712 @default.
- W2894310699 hasRelatedWork W3087539757 @default.
- W2894310699 hasRelatedWork W4248069282 @default.
- W2894310699 isParatext "false" @default.
- W2894310699 isRetracted "false" @default.
- W2894310699 magId "2894310699" @default.
- W2894310699 workType "article" @default.