Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894313012> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2894313012 endingPage "358" @default.
- W2894313012 startingPage "351" @default.
- W2894313012 abstract "This paper represents the research results of applying machine learning methods for early predicting of cardiovascular patients mortality. The classification task is solved by analyzing the dynamics data from electronic health records of the patients with the acute coronary syndrome, infarction, and stable angina. Moreover, the approach for identification of model components and their connection is developed. The model structure identification assimilates the patient condition, treatment phases in treatment dynamic. It provides the prediction of better model structure on following steps and request for necessary data to improve the forecast for more informed decision-making. The dynamic data extracted directly from medical information system were analyzed, that is very close to the real process. Using machine learning methods it is possible to make an early prediction of mortality risks. The prediction of laboratory results allows saving the resources. Jointly, both can be offered to clinicians as support for accurate, reasonable saving clinical decisions with minimization risks for patient’s health. The simple lab test results like hemoglobin (HGB), red blood cells (RBC), alanine transaminase (ALT), aspartate transaminase (AST), glucose, platelet (PLT), creatinine levels are used as a predictor. Such a simple approach to solving critical tasks can make the method widely used in clinical practice. The identification of the patient groups’ individuality into account the dynamics probably can contribute to E-science." @default.
- W2894313012 created "2018-10-05" @default.
- W2894313012 creator A5029904389 @default.
- W2894313012 creator A5049891708 @default.
- W2894313012 creator A5050411442 @default.
- W2894313012 creator A5065936625 @default.
- W2894313012 date "2018-01-01" @default.
- W2894313012 modified "2023-09-27" @default.
- W2894313012 title "Dynamic mortality prediction using machine learning techniques for acute cardiovascular cases" @default.
- W2894313012 cites W2025296188 @default.
- W2894313012 cites W2087655457 @default.
- W2894313012 cites W2101350555 @default.
- W2894313012 cites W2109325327 @default.
- W2894313012 cites W2274178603 @default.
- W2894313012 cites W2294484646 @default.
- W2894313012 cites W2778743918 @default.
- W2894313012 cites W2782364997 @default.
- W2894313012 cites W2790631798 @default.
- W2894313012 cites W2797154251 @default.
- W2894313012 doi "https://doi.org/10.1016/j.procs.2018.08.279" @default.
- W2894313012 hasPublicationYear "2018" @default.
- W2894313012 type Work @default.
- W2894313012 sameAs 2894313012 @default.
- W2894313012 citedByCount "10" @default.
- W2894313012 countsByYear W28943130122019 @default.
- W2894313012 countsByYear W28943130122020 @default.
- W2894313012 countsByYear W28943130122021 @default.
- W2894313012 countsByYear W28943130122022 @default.
- W2894313012 countsByYear W28943130122023 @default.
- W2894313012 crossrefType "journal-article" @default.
- W2894313012 hasAuthorship W2894313012A5029904389 @default.
- W2894313012 hasAuthorship W2894313012A5049891708 @default.
- W2894313012 hasAuthorship W2894313012A5050411442 @default.
- W2894313012 hasAuthorship W2894313012A5065936625 @default.
- W2894313012 hasBestOaLocation W28943130121 @default.
- W2894313012 hasConcept C111919701 @default.
- W2894313012 hasConcept C116834253 @default.
- W2894313012 hasConcept C119857082 @default.
- W2894313012 hasConcept C124101348 @default.
- W2894313012 hasConcept C126322002 @default.
- W2894313012 hasConcept C154945302 @default.
- W2894313012 hasConcept C160160445 @default.
- W2894313012 hasConcept C181199279 @default.
- W2894313012 hasConcept C185592680 @default.
- W2894313012 hasConcept C2777698277 @default.
- W2894313012 hasConcept C2777785093 @default.
- W2894313012 hasConcept C2779679107 @default.
- W2894313012 hasConcept C41008148 @default.
- W2894313012 hasConcept C500558357 @default.
- W2894313012 hasConcept C55493867 @default.
- W2894313012 hasConcept C59822182 @default.
- W2894313012 hasConcept C71924100 @default.
- W2894313012 hasConcept C84525736 @default.
- W2894313012 hasConcept C86803240 @default.
- W2894313012 hasConcept C98045186 @default.
- W2894313012 hasConceptScore W2894313012C111919701 @default.
- W2894313012 hasConceptScore W2894313012C116834253 @default.
- W2894313012 hasConceptScore W2894313012C119857082 @default.
- W2894313012 hasConceptScore W2894313012C124101348 @default.
- W2894313012 hasConceptScore W2894313012C126322002 @default.
- W2894313012 hasConceptScore W2894313012C154945302 @default.
- W2894313012 hasConceptScore W2894313012C160160445 @default.
- W2894313012 hasConceptScore W2894313012C181199279 @default.
- W2894313012 hasConceptScore W2894313012C185592680 @default.
- W2894313012 hasConceptScore W2894313012C2777698277 @default.
- W2894313012 hasConceptScore W2894313012C2777785093 @default.
- W2894313012 hasConceptScore W2894313012C2779679107 @default.
- W2894313012 hasConceptScore W2894313012C41008148 @default.
- W2894313012 hasConceptScore W2894313012C500558357 @default.
- W2894313012 hasConceptScore W2894313012C55493867 @default.
- W2894313012 hasConceptScore W2894313012C59822182 @default.
- W2894313012 hasConceptScore W2894313012C71924100 @default.
- W2894313012 hasConceptScore W2894313012C84525736 @default.
- W2894313012 hasConceptScore W2894313012C86803240 @default.
- W2894313012 hasConceptScore W2894313012C98045186 @default.
- W2894313012 hasLocation W28943130121 @default.
- W2894313012 hasOpenAccess W2894313012 @default.
- W2894313012 hasPrimaryLocation W28943130121 @default.
- W2894313012 hasRelatedWork W1470425429 @default.
- W2894313012 hasRelatedWork W2166113161 @default.
- W2894313012 hasRelatedWork W2355824871 @default.
- W2894313012 hasRelatedWork W2363430326 @default.
- W2894313012 hasRelatedWork W2374941115 @default.
- W2894313012 hasRelatedWork W2378414076 @default.
- W2894313012 hasRelatedWork W3185179407 @default.
- W2894313012 hasRelatedWork W4205478082 @default.
- W2894313012 hasRelatedWork W4318350883 @default.
- W2894313012 hasRelatedWork W4328134586 @default.
- W2894313012 hasVolume "136" @default.
- W2894313012 isParatext "false" @default.
- W2894313012 isRetracted "false" @default.
- W2894313012 magId "2894313012" @default.
- W2894313012 workType "article" @default.