Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894314600> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2894314600 abstract "Molecular omics (genomics, transcriptomics, proteomics, metabolomics, etc.) analysis is now playing the significant rule for cancer prediction, where gene expression profile is one of the most popular omicss. Kernel based Support Vector Machines (SVMs) are now widely using for cancer prediction based on the profiles of gene expression. However, the kernel based SVM's performance depends on both kernel and feature selection. Here, in this paper, we would like propose a way for both important kernel and features (important genes) selection for SVM to predict the colon cancer based on gene expression profile. Features (genes) selection has been done by t-statistic. Then a comparative study of cancer prediction accuracy of the proposed kernel based SVM with some popular predictors (Naive Bayes (NB), linear discriminate analysis (LDA) and quadratic linear discriminate analysis (QDA)) had been performed using the selected top 3 genes which are ranked with the help of the t-statistic. The proposed SVM-radial basis is found to be the better colon cancer predictor based on area under the curve (AUC) of the receiver operating characteristics and total accuracy. Thus we may reach to a conclusion that SVM-radial basis and t-statistic based feature selection altogether is an effective and feasible substitute to common techniques." @default.
- W2894314600 created "2018-10-05" @default.
- W2894314600 creator A5014219466 @default.
- W2894314600 creator A5027967717 @default.
- W2894314600 creator A5028741163 @default.
- W2894314600 creator A5068174343 @default.
- W2894314600 creator A5088436463 @default.
- W2894314600 date "2018-02-01" @default.
- W2894314600 modified "2023-09-25" @default.
- W2894314600 title "Colon Cancer Prediction from Gene Expression Profiles Using Kernel Based Support Vector Machine" @default.
- W2894314600 cites W1577165969 @default.
- W2894314600 cites W1963795510 @default.
- W2894314600 cites W2039650965 @default.
- W2894314600 cites W2079805598 @default.
- W2894314600 cites W2081557347 @default.
- W2894314600 cites W2087684630 @default.
- W2894314600 cites W2108728387 @default.
- W2894314600 cites W2109363337 @default.
- W2894314600 cites W2128985829 @default.
- W2894314600 cites W2140447133 @default.
- W2894314600 cites W2143426320 @default.
- W2894314600 cites W2145443884 @default.
- W2894314600 cites W2158086655 @default.
- W2894314600 cites W2168117806 @default.
- W2894314600 doi "https://doi.org/10.1109/ic4me2.2018.8465636" @default.
- W2894314600 hasPublicationYear "2018" @default.
- W2894314600 type Work @default.
- W2894314600 sameAs 2894314600 @default.
- W2894314600 citedByCount "5" @default.
- W2894314600 countsByYear W28943146002018 @default.
- W2894314600 countsByYear W28943146002019 @default.
- W2894314600 countsByYear W28943146002020 @default.
- W2894314600 countsByYear W28943146002021 @default.
- W2894314600 countsByYear W28943146002022 @default.
- W2894314600 crossrefType "proceedings-article" @default.
- W2894314600 hasAuthorship W2894314600A5014219466 @default.
- W2894314600 hasAuthorship W2894314600A5027967717 @default.
- W2894314600 hasAuthorship W2894314600A5028741163 @default.
- W2894314600 hasAuthorship W2894314600A5068174343 @default.
- W2894314600 hasAuthorship W2894314600A5088436463 @default.
- W2894314600 hasConcept C105795698 @default.
- W2894314600 hasConcept C114614502 @default.
- W2894314600 hasConcept C119857082 @default.
- W2894314600 hasConcept C122280245 @default.
- W2894314600 hasConcept C12267149 @default.
- W2894314600 hasConcept C148483581 @default.
- W2894314600 hasConcept C153180895 @default.
- W2894314600 hasConcept C154945302 @default.
- W2894314600 hasConcept C33923547 @default.
- W2894314600 hasConcept C41008148 @default.
- W2894314600 hasConcept C52001869 @default.
- W2894314600 hasConcept C74193536 @default.
- W2894314600 hasConcept C75866337 @default.
- W2894314600 hasConcept C81917197 @default.
- W2894314600 hasConcept C89128539 @default.
- W2894314600 hasConceptScore W2894314600C105795698 @default.
- W2894314600 hasConceptScore W2894314600C114614502 @default.
- W2894314600 hasConceptScore W2894314600C119857082 @default.
- W2894314600 hasConceptScore W2894314600C122280245 @default.
- W2894314600 hasConceptScore W2894314600C12267149 @default.
- W2894314600 hasConceptScore W2894314600C148483581 @default.
- W2894314600 hasConceptScore W2894314600C153180895 @default.
- W2894314600 hasConceptScore W2894314600C154945302 @default.
- W2894314600 hasConceptScore W2894314600C33923547 @default.
- W2894314600 hasConceptScore W2894314600C41008148 @default.
- W2894314600 hasConceptScore W2894314600C52001869 @default.
- W2894314600 hasConceptScore W2894314600C74193536 @default.
- W2894314600 hasConceptScore W2894314600C75866337 @default.
- W2894314600 hasConceptScore W2894314600C81917197 @default.
- W2894314600 hasConceptScore W2894314600C89128539 @default.
- W2894314600 hasLocation W28943146001 @default.
- W2894314600 hasOpenAccess W2894314600 @default.
- W2894314600 hasPrimaryLocation W28943146001 @default.
- W2894314600 hasRelatedWork W2097028249 @default.
- W2894314600 hasRelatedWork W2108482774 @default.
- W2894314600 hasRelatedWork W2136184105 @default.
- W2894314600 hasRelatedWork W2138105001 @default.
- W2894314600 hasRelatedWork W2146785254 @default.
- W2894314600 hasRelatedWork W2169565408 @default.
- W2894314600 hasRelatedWork W2364829510 @default.
- W2894314600 hasRelatedWork W2766051482 @default.
- W2894314600 hasRelatedWork W2985924212 @default.
- W2894314600 hasRelatedWork W2345184372 @default.
- W2894314600 isParatext "false" @default.
- W2894314600 isRetracted "false" @default.
- W2894314600 magId "2894314600" @default.
- W2894314600 workType "article" @default.