Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894319790> ?p ?o ?g. }
- W2894319790 endingPage "228" @default.
- W2894319790 startingPage "218" @default.
- W2894319790 abstract "Purpose To develop and validate a deep learning–based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph–to–nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18–99 years]; 15 446 women [mean age, 52.3 years; age range, 18–98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92–0.99 (AUROC) and 0.831–0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006–0.190; P < .05). Conclusion This deep learning–based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians’ performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article" @default.
- W2894319790 created "2018-10-05" @default.
- W2894319790 creator A5006823336 @default.
- W2894319790 creator A5024020141 @default.
- W2894319790 creator A5024049594 @default.
- W2894319790 creator A5026667487 @default.
- W2894319790 creator A5028108271 @default.
- W2894319790 creator A5030762203 @default.
- W2894319790 creator A5038670224 @default.
- W2894319790 creator A5040958088 @default.
- W2894319790 creator A5083553936 @default.
- W2894319790 creator A5089624618 @default.
- W2894319790 creator A5091438057 @default.
- W2894319790 date "2019-01-01" @default.
- W2894319790 modified "2023-10-09" @default.
- W2894319790 title "Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs" @default.
- W2894319790 cites W151626335 @default.
- W2894319790 cites W1869362176 @default.
- W2894319790 cites W1898227994 @default.
- W2894319790 cites W2014675499 @default.
- W2894319790 cites W2026644223 @default.
- W2894319790 cites W2048642086 @default.
- W2894319790 cites W2058794460 @default.
- W2894319790 cites W2082384201 @default.
- W2894319790 cites W2096734290 @default.
- W2894319790 cites W2100791815 @default.
- W2894319790 cites W2112796928 @default.
- W2894319790 cites W2118604851 @default.
- W2894319790 cites W2120903075 @default.
- W2894319790 cites W2124982846 @default.
- W2894319790 cites W2137056903 @default.
- W2894319790 cites W2141765356 @default.
- W2894319790 cites W2163922914 @default.
- W2894319790 cites W2169053471 @default.
- W2894319790 cites W2170698529 @default.
- W2894319790 cites W2211483859 @default.
- W2894319790 cites W2328176404 @default.
- W2894319790 cites W2342201383 @default.
- W2894319790 cites W2394863728 @default.
- W2894319790 cites W2589552858 @default.
- W2894319790 cites W2592684986 @default.
- W2894319790 cites W2919115771 @default.
- W2894319790 doi "https://doi.org/10.1148/radiol.2018180237" @default.
- W2894319790 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30251934" @default.
- W2894319790 hasPublicationYear "2019" @default.
- W2894319790 type Work @default.
- W2894319790 sameAs 2894319790 @default.
- W2894319790 citedByCount "342" @default.
- W2894319790 countsByYear W28943197902018 @default.
- W2894319790 countsByYear W28943197902019 @default.
- W2894319790 countsByYear W28943197902020 @default.
- W2894319790 countsByYear W28943197902021 @default.
- W2894319790 countsByYear W28943197902022 @default.
- W2894319790 countsByYear W28943197902023 @default.
- W2894319790 crossrefType "journal-article" @default.
- W2894319790 hasAuthorship W2894319790A5006823336 @default.
- W2894319790 hasAuthorship W2894319790A5024020141 @default.
- W2894319790 hasAuthorship W2894319790A5024049594 @default.
- W2894319790 hasAuthorship W2894319790A5026667487 @default.
- W2894319790 hasAuthorship W2894319790A5028108271 @default.
- W2894319790 hasAuthorship W2894319790A5030762203 @default.
- W2894319790 hasAuthorship W2894319790A5038670224 @default.
- W2894319790 hasAuthorship W2894319790A5040958088 @default.
- W2894319790 hasAuthorship W2894319790A5083553936 @default.
- W2894319790 hasAuthorship W2894319790A5089624618 @default.
- W2894319790 hasAuthorship W2894319790A5091438057 @default.
- W2894319790 hasBestOaLocation W28943197901 @default.
- W2894319790 hasConcept C11413529 @default.
- W2894319790 hasConcept C126322002 @default.
- W2894319790 hasConcept C126838900 @default.
- W2894319790 hasConcept C151730666 @default.
- W2894319790 hasConcept C154945302 @default.
- W2894319790 hasConcept C2776731575 @default.
- W2894319790 hasConcept C2781137159 @default.
- W2894319790 hasConcept C2989005 @default.
- W2894319790 hasConcept C36454342 @default.
- W2894319790 hasConcept C41008148 @default.
- W2894319790 hasConcept C58471807 @default.
- W2894319790 hasConcept C71924100 @default.
- W2894319790 hasConcept C86803240 @default.
- W2894319790 hasConceptScore W2894319790C11413529 @default.
- W2894319790 hasConceptScore W2894319790C126322002 @default.
- W2894319790 hasConceptScore W2894319790C126838900 @default.
- W2894319790 hasConceptScore W2894319790C151730666 @default.
- W2894319790 hasConceptScore W2894319790C154945302 @default.
- W2894319790 hasConceptScore W2894319790C2776731575 @default.
- W2894319790 hasConceptScore W2894319790C2781137159 @default.
- W2894319790 hasConceptScore W2894319790C2989005 @default.
- W2894319790 hasConceptScore W2894319790C36454342 @default.
- W2894319790 hasConceptScore W2894319790C41008148 @default.
- W2894319790 hasConceptScore W2894319790C58471807 @default.
- W2894319790 hasConceptScore W2894319790C71924100 @default.
- W2894319790 hasConceptScore W2894319790C86803240 @default.
- W2894319790 hasIssue "1" @default.
- W2894319790 hasLocation W28943197901 @default.
- W2894319790 hasLocation W28943197902 @default.
- W2894319790 hasOpenAccess W2894319790 @default.
- W2894319790 hasPrimaryLocation W28943197901 @default.