Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894326236> ?p ?o ?g. }
- W2894326236 endingPage "780" @default.
- W2894326236 startingPage "767" @default.
- W2894326236 abstract "Estimation of above-ground biomass is vital for understanding ecological processes. Since direct measurement of above-ground biomass is destructive, time consuming and labor intensive, canopy cover can be considered as a predictor if a significant correlation between the two variables exists. In this study, relationship between canopy cover and above-ground biomass was investigated by a general linear regression model. To do so, canopy cover and above-ground biomass were measured at 5 sub-life forms (defined as life forms grouped in the same height classes) using 380 quadrats, which is systematic-randomly laid out along a 10-km transect, during four sampling periods (May, June, August, and September) in an arid rangeland of Marjan, Iran. To reveal whether obtained canopy cover and above-ground biomass of different sampling periods can be lumped together or not, we applied a general linear model (GLM). In this model, above-ground biomass was considered as a dependent or response variable, canopy cover as an independent covariate or predictor factor and sub-life forms as well as sampling periods as fixed factors. Moreover, we compared the estimated above-ground biomass derived from remotely sensed images of Landsat-8 using NDVI (normalized difference vegetation index), after finding the best regression line between predictor (measured canopy cover in the field) and response variable (above-ground biomass) to test the robustness of the induced model. Results show that above-ground biomass (response variable) of all vegetative forms and periods can be accurately predicted by canopy cover (predictor), although sub-life forms and sampling periods significantly affect the results. The best regression fit was found for short forbs in September and shrubs in May, June and August with R2 values of 0.96, 0.93 and 0.91, respectively, whilst the least significant was found for short grasses in June, tall grasses in August and tall forbs in June with R2 values of 0.71, 0.73 and 0.75, respectively. Even though the estimated above-ground biomass by NDVI is also convincing (R2=0.57), the canopy cover is a more reliable predictor of above-ground biomass due to the higher R2 values (from 0.75 to 0.96). We conclude that canopy cover can be regarded as a reliable predictor of above-ground biomass if sub-life forms and sampling periods (during growing season) are taken into account. Since, (1) plant canopy cover is not distinguishable by remotely sensed images at the sub-life form level, especially in sparse vegetation of arid and semi-arid regions, and (2) remotely sensed-based prediction of above-ground biomass shows a less significant relationship (R2=0.57) than that of canopy cover (R2 ranging from 0.75 to 0.96), which suggests estimating of plant biomass by canopy cover instead of cut and weighting method is highly recommended. Furthermore, this fast, nondestructive and robust method that does not endanger rare species, gives a trustworthy prediction of above-ground biomass in arid rangelands." @default.
- W2894326236 created "2018-10-05" @default.
- W2894326236 creator A5054330286 @default.
- W2894326236 creator A5068798831 @default.
- W2894326236 creator A5086289479 @default.
- W2894326236 date "2018-09-27" @default.
- W2894326236 modified "2023-10-12" @default.
- W2894326236 title "Canopy cover or remotely sensed vegetation index, explanatory variables of above-ground biomass in an arid rangeland, Iran" @default.
- W2894326236 cites W163725532 @default.
- W2894326236 cites W1751770737 @default.
- W2894326236 cites W1974328142 @default.
- W2894326236 cites W1983100679 @default.
- W2894326236 cites W1996464853 @default.
- W2894326236 cites W1997676298 @default.
- W2894326236 cites W1999924636 @default.
- W2894326236 cites W2007646266 @default.
- W2894326236 cites W2008878870 @default.
- W2894326236 cites W2012286748 @default.
- W2894326236 cites W2015853693 @default.
- W2894326236 cites W203251317 @default.
- W2894326236 cites W2033182161 @default.
- W2894326236 cites W2044554891 @default.
- W2894326236 cites W2058213690 @default.
- W2894326236 cites W2059499261 @default.
- W2894326236 cites W2063623478 @default.
- W2894326236 cites W2064826591 @default.
- W2894326236 cites W2065108121 @default.
- W2894326236 cites W2076708840 @default.
- W2894326236 cites W2086884166 @default.
- W2894326236 cites W2108692654 @default.
- W2894326236 cites W2109417254 @default.
- W2894326236 cites W2115741404 @default.
- W2894326236 cites W2117954061 @default.
- W2894326236 cites W2119784475 @default.
- W2894326236 cites W2122841733 @default.
- W2894326236 cites W2140175581 @default.
- W2894326236 cites W2165577558 @default.
- W2894326236 cites W2168441213 @default.
- W2894326236 cites W2178664687 @default.
- W2894326236 cites W2292481897 @default.
- W2894326236 cites W2489430647 @default.
- W2894326236 cites W2512977189 @default.
- W2894326236 cites W2605857584 @default.
- W2894326236 cites W1987713305 @default.
- W2894326236 doi "https://doi.org/10.1007/s40333-018-0017-y" @default.
- W2894326236 hasPublicationYear "2018" @default.
- W2894326236 type Work @default.
- W2894326236 sameAs 2894326236 @default.
- W2894326236 citedByCount "10" @default.
- W2894326236 countsByYear W28943262362020 @default.
- W2894326236 countsByYear W28943262362021 @default.
- W2894326236 countsByYear W28943262362022 @default.
- W2894326236 countsByYear W28943262362023 @default.
- W2894326236 crossrefType "journal-article" @default.
- W2894326236 hasAuthorship W2894326236A5054330286 @default.
- W2894326236 hasAuthorship W2894326236A5068798831 @default.
- W2894326236 hasAuthorship W2894326236A5086289479 @default.
- W2894326236 hasBestOaLocation W28943262362 @default.
- W2894326236 hasConcept C100970517 @default.
- W2894326236 hasConcept C101000010 @default.
- W2894326236 hasConcept C105795698 @default.
- W2894326236 hasConcept C107394435 @default.
- W2894326236 hasConcept C115540264 @default.
- W2894326236 hasConcept C127313418 @default.
- W2894326236 hasConcept C130989795 @default.
- W2894326236 hasConcept C142724271 @default.
- W2894326236 hasConcept C150772632 @default.
- W2894326236 hasConcept C1549246 @default.
- W2894326236 hasConcept C187320778 @default.
- W2894326236 hasConcept C18903297 @default.
- W2894326236 hasConcept C201401522 @default.
- W2894326236 hasConcept C205649164 @default.
- W2894326236 hasConcept C25989453 @default.
- W2894326236 hasConcept C2776133958 @default.
- W2894326236 hasConcept C33923547 @default.
- W2894326236 hasConcept C39432304 @default.
- W2894326236 hasConcept C48921125 @default.
- W2894326236 hasConcept C54286561 @default.
- W2894326236 hasConcept C69661492 @default.
- W2894326236 hasConcept C71924100 @default.
- W2894326236 hasConcept C76886044 @default.
- W2894326236 hasConcept C86803240 @default.
- W2894326236 hasConcept C91586092 @default.
- W2894326236 hasConceptScore W2894326236C100970517 @default.
- W2894326236 hasConceptScore W2894326236C101000010 @default.
- W2894326236 hasConceptScore W2894326236C105795698 @default.
- W2894326236 hasConceptScore W2894326236C107394435 @default.
- W2894326236 hasConceptScore W2894326236C115540264 @default.
- W2894326236 hasConceptScore W2894326236C127313418 @default.
- W2894326236 hasConceptScore W2894326236C130989795 @default.
- W2894326236 hasConceptScore W2894326236C142724271 @default.
- W2894326236 hasConceptScore W2894326236C150772632 @default.
- W2894326236 hasConceptScore W2894326236C1549246 @default.
- W2894326236 hasConceptScore W2894326236C187320778 @default.
- W2894326236 hasConceptScore W2894326236C18903297 @default.
- W2894326236 hasConceptScore W2894326236C201401522 @default.
- W2894326236 hasConceptScore W2894326236C205649164 @default.
- W2894326236 hasConceptScore W2894326236C25989453 @default.