Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894331158> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2894331158 endingPage "1431" @default.
- W2894331158 startingPage "1431" @default.
- W2894331158 abstract "<p class='IJASEITAbtract'><span lang='EN-GB'>Mental health detection in Online Social Network (OSN) is widely studied in the recent years. OSN has encouraged new ways to communicate and share information, and it is used regularly by millions of people. It generates a mass amount of information that can be utilised to develop <a name='_Hlk523258472'></a>mental health detection. The rich content provided by OSN should not be overlooked as it could give more value to the data explored by the researcher. The main purpose of this study is to extract and scrutinise related works from related literature on detection of mental health using OSN. With the focus on the method used, machine learning algorithm, sources of OSN, and types of language used for the mental health detection were chosen for the study. The basic design of this study is in the form of a survey from the literature related to current research in mental health. Major findings revealed that the most frequently used method in mental health detection is machine learning techniques, with Support Vector Machine (SVM) as the most chosen algorithm. Meanwhile, Twitter is the major data source from OSN with English language used for mental health detection. The researcher found a few challenges from the previous studies and analyses, and these include limitations in language barrier, account privacy in OSN, single type of OSN, text analysis, and limited features selection. Based on the limitations, the researcher outlined a future direction of mental health detection using language based on user’s geo-location and mother tongue. The use of pictorial, audio and video formats in OSN could become one of the potential areas to be explored in future research. Extracting data from multiple sources of OSNs with new features selection will probably improve mental health detection in the future. In conclusion, this research has a big potential to be explored further in the future.</span>" @default.
- W2894331158 created "2018-10-05" @default.
- W2894331158 creator A5020369923 @default.
- W2894331158 creator A5070390862 @default.
- W2894331158 creator A5078642312 @default.
- W2894331158 creator A5084358405 @default.
- W2894331158 date "2018-09-26" @default.
- W2894331158 modified "2023-09-29" @default.
- W2894331158 title "A Survey on Mental Health Detection in Online Social Network" @default.
- W2894331158 cites W1896484594 @default.
- W2894331158 cites W1912166081 @default.
- W2894331158 cites W1968291108 @default.
- W2894331158 cites W1985541164 @default.
- W2894331158 cites W2028948654 @default.
- W2894331158 cites W2033138748 @default.
- W2894331158 cites W2416164492 @default.
- W2894331158 cites W2461164045 @default.
- W2894331158 cites W2470380728 @default.
- W2894331158 cites W2564461987 @default.
- W2894331158 cites W2600145262 @default.
- W2894331158 cites W2606694865 @default.
- W2894331158 cites W2619140038 @default.
- W2894331158 cites W2751884637 @default.
- W2894331158 cites W2761700066 @default.
- W2894331158 cites W3098017922 @default.
- W2894331158 doi "https://doi.org/10.18517/ijaseit.8.4-2.6830" @default.
- W2894331158 hasPublicationYear "2018" @default.
- W2894331158 type Work @default.
- W2894331158 sameAs 2894331158 @default.
- W2894331158 citedByCount "12" @default.
- W2894331158 countsByYear W28943311582019 @default.
- W2894331158 countsByYear W28943311582020 @default.
- W2894331158 countsByYear W28943311582021 @default.
- W2894331158 countsByYear W28943311582022 @default.
- W2894331158 countsByYear W28943311582023 @default.
- W2894331158 crossrefType "journal-article" @default.
- W2894331158 hasAuthorship W2894331158A5020369923 @default.
- W2894331158 hasAuthorship W2894331158A5070390862 @default.
- W2894331158 hasAuthorship W2894331158A5078642312 @default.
- W2894331158 hasAuthorship W2894331158A5084358405 @default.
- W2894331158 hasBestOaLocation W28943311581 @default.
- W2894331158 hasConcept C118552586 @default.
- W2894331158 hasConcept C119857082 @default.
- W2894331158 hasConcept C12267149 @default.
- W2894331158 hasConcept C134362201 @default.
- W2894331158 hasConcept C154945302 @default.
- W2894331158 hasConcept C15744967 @default.
- W2894331158 hasConcept C2522767166 @default.
- W2894331158 hasConcept C2776674806 @default.
- W2894331158 hasConcept C2777212361 @default.
- W2894331158 hasConcept C41008148 @default.
- W2894331158 hasConcept C81917197 @default.
- W2894331158 hasConceptScore W2894331158C118552586 @default.
- W2894331158 hasConceptScore W2894331158C119857082 @default.
- W2894331158 hasConceptScore W2894331158C12267149 @default.
- W2894331158 hasConceptScore W2894331158C134362201 @default.
- W2894331158 hasConceptScore W2894331158C154945302 @default.
- W2894331158 hasConceptScore W2894331158C15744967 @default.
- W2894331158 hasConceptScore W2894331158C2522767166 @default.
- W2894331158 hasConceptScore W2894331158C2776674806 @default.
- W2894331158 hasConceptScore W2894331158C2777212361 @default.
- W2894331158 hasConceptScore W2894331158C41008148 @default.
- W2894331158 hasConceptScore W2894331158C81917197 @default.
- W2894331158 hasIssue "4-2" @default.
- W2894331158 hasLocation W28943311581 @default.
- W2894331158 hasOpenAccess W2894331158 @default.
- W2894331158 hasPrimaryLocation W28943311581 @default.
- W2894331158 hasRelatedWork W1996541855 @default.
- W2894331158 hasRelatedWork W2355927362 @default.
- W2894331158 hasRelatedWork W2748952813 @default.
- W2894331158 hasRelatedWork W2899084033 @default.
- W2894331158 hasRelatedWork W2961085424 @default.
- W2894331158 hasRelatedWork W3195168932 @default.
- W2894331158 hasRelatedWork W4286629047 @default.
- W2894331158 hasRelatedWork W4306321456 @default.
- W2894331158 hasRelatedWork W4306674287 @default.
- W2894331158 hasRelatedWork W4224009465 @default.
- W2894331158 hasVolume "8" @default.
- W2894331158 isParatext "false" @default.
- W2894331158 isRetracted "false" @default.
- W2894331158 magId "2894331158" @default.
- W2894331158 workType "article" @default.