Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894358134> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2894358134 endingPage "272" @default.
- W2894358134 startingPage "260" @default.
- W2894358134 abstract "The deep learning community has greatly progressed towards integrating deep neural nets with reinforcement learning, in what is termed ‘deep reinforcement learning.’ This project aims to investigate the importance of deep neural networks in reinforcement learning. It analyzes the role that deep learning plays in tackling a range of different reinforcement learning problems. By analyzing and evaluating different methods (like Monte Carlo Tree Searches and model-based methods), the project refutes the popular claim that deep reinforcement learning is always the best option to tackle certain problems and explores research papers that support this hypothesis. It identifies the current limitations of deep neural nets, such as overfitting, sparse/shaped reward functions, and sample inefficiency. The project also discusses the potential of Deep-Q Networks, and surprising results in various domains. Thus, in an attempt to compare the merits and problems of deep learning, the project determines the degree to which neural networks are useful in reinforcement learning problems, both now and in the future. Taking the AlphaGo algorithm (and how it beat world Go champion Lee Sedol) case study as a starting point, the project unveils the potential of deep reinforcement learning despite the many challenges it faces today. Therefore, it also aims to come to a conclusion about how deep neural nets in reinforcement learning is likely to develop in the future as data becomes increasingly available and hardware becomes cheaper." @default.
- W2894358134 created "2018-10-05" @default.
- W2894358134 creator A5036368713 @default.
- W2894358134 date "2018-09-23" @default.
- W2894358134 modified "2023-09-24" @default.
- W2894358134 title "Evaluating the Efficacy of Deep Neural Networks in Reinforcement Learning Problems" @default.
- W2894358134 cites W2040870580 @default.
- W2894358134 cites W2087617385 @default.
- W2894358134 cites W2127412976 @default.
- W2894358134 cites W2145339207 @default.
- W2894358134 cites W2151210636 @default.
- W2894358134 cites W2610395436 @default.
- W2894358134 hasPublicationYear "2018" @default.
- W2894358134 type Work @default.
- W2894358134 sameAs 2894358134 @default.
- W2894358134 citedByCount "0" @default.
- W2894358134 crossrefType "journal-article" @default.
- W2894358134 hasAuthorship W2894358134A5036368713 @default.
- W2894358134 hasConcept C108583219 @default.
- W2894358134 hasConcept C119857082 @default.
- W2894358134 hasConcept C154945302 @default.
- W2894358134 hasConcept C17744445 @default.
- W2894358134 hasConcept C199539241 @default.
- W2894358134 hasConcept C22019652 @default.
- W2894358134 hasConcept C2780465443 @default.
- W2894358134 hasConcept C41008148 @default.
- W2894358134 hasConcept C50644808 @default.
- W2894358134 hasConcept C97541855 @default.
- W2894358134 hasConceptScore W2894358134C108583219 @default.
- W2894358134 hasConceptScore W2894358134C119857082 @default.
- W2894358134 hasConceptScore W2894358134C154945302 @default.
- W2894358134 hasConceptScore W2894358134C17744445 @default.
- W2894358134 hasConceptScore W2894358134C199539241 @default.
- W2894358134 hasConceptScore W2894358134C22019652 @default.
- W2894358134 hasConceptScore W2894358134C2780465443 @default.
- W2894358134 hasConceptScore W2894358134C41008148 @default.
- W2894358134 hasConceptScore W2894358134C50644808 @default.
- W2894358134 hasConceptScore W2894358134C97541855 @default.
- W2894358134 hasIssue "1" @default.
- W2894358134 hasLocation W28943581341 @default.
- W2894358134 hasOpenAccess W2894358134 @default.
- W2894358134 hasPrimaryLocation W28943581341 @default.
- W2894358134 hasRelatedWork W2555488107 @default.
- W2894358134 hasRelatedWork W2735850463 @default.
- W2894358134 hasRelatedWork W2883899184 @default.
- W2894358134 hasRelatedWork W2900744752 @default.
- W2894358134 hasRelatedWork W2921669919 @default.
- W2894358134 hasRelatedWork W2939023475 @default.
- W2894358134 hasRelatedWork W2970307307 @default.
- W2894358134 hasRelatedWork W2973184394 @default.
- W2894358134 hasRelatedWork W2997633275 @default.
- W2894358134 hasRelatedWork W3015302423 @default.
- W2894358134 hasRelatedWork W3033923268 @default.
- W2894358134 hasRelatedWork W3092954297 @default.
- W2894358134 hasRelatedWork W3110048054 @default.
- W2894358134 hasRelatedWork W3111442723 @default.
- W2894358134 hasRelatedWork W3119613234 @default.
- W2894358134 hasRelatedWork W3135025188 @default.
- W2894358134 hasRelatedWork W3146636758 @default.
- W2894358134 hasRelatedWork W3171711942 @default.
- W2894358134 hasRelatedWork W3191046242 @default.
- W2894358134 hasRelatedWork W3209247505 @default.
- W2894358134 hasVolume "46" @default.
- W2894358134 isParatext "false" @default.
- W2894358134 isRetracted "false" @default.
- W2894358134 magId "2894358134" @default.
- W2894358134 workType "article" @default.