Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894393857> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2894393857 abstract "In this dissertation, we present modern analytical methods for studying conformal field theories (CFTs) in more than two dimensions. Using these methods, the spectrum of theory and the operator product coefficients (OPE coefficients) can be determined. First, we examine the spectrum of local operators in CFTs on a defect with a codimension greater than one. We show that for large transverse spin s, the spectrum of each theory has countably infinitely many accumulation points. The spin s is the quantum number belonging to the subgroup of the Lorentz group, which leaves the defect invariant. Furthermore, we find the OPE coefficients and the anomalous dimensions of the clustering operators in a 1 / s evolution using light cone bootstrap techniques. In addition, we derive the operator dimensions and OPE coefficients as analytic functions of s from the discontinuity of the causal two-point function. In the second part of this work, we introduce the Mellind representation of conformal correlation functions. In this representation, the spectrum and the OPE coefficients are manifest. We focus on the description of four-point functions in three dimensions of either exclusively spin 1/2 operators or a mixture of spin 1/2 and scalar operators. After defining the mellin amplitudes for these four-point functions, we examine the pol- We then illustrate the analysis of concrete mellin amplitudes of fermionic Wittendiagrams and conformal fermionic Feynman diagrams. In the last part, we examine the OPE in the context of holography. Here we derive theory-independent relations between the OPE coefficients of the world surface CFT of a string theory in anti-de-sitter space-time and the dual CFT. In this thesis, we discuss some of the more advanced analytical approaches to studying conformal field theories (CFTs) in terms of more than two. The CFT, which is the spectrum of operators and the coefficients in the operator product expansion (OPE). Therein about a countable infinite number of universal accumulation points at large transverse spin s. Here, s is a quantum number associated with the symmetry under the Lorentz transformations that preserve the defect. Using lightcone bootstrap techniques, We calculate the anomalous dimensions and OPE coefficients of the operators that populate these accumulation points in a large scale expansion. Furthermore, the additive theory of the discontinuity in the causal two-point function of scalar operators in the ambient theory, inverts the expansion of this correlator in the defect channel. This formula extracts the operator dimensions and OPE coefficients in an analytic function in s and thus enables us to resume the large expansion obtained using lightcone bootstrap. Thereafter we move to a discussion of the Mellin representation of fermionic conformal correlators. The dynamic data in CFTs is manifest in the analytic properties of Mellin amplitudes. We define, concretely for three spacetime dimensions, the Mellin amplitudes associated with the four-point function of spin-half operators and the mixed four-point function of spin-half and scalar operators. Feynman integrals with fermionic legs. Mellin amplitudes and illustrate the general features. Finally we look at the OPE in the context of holography and derive a set of theory. OPE coefficients in the worldsheet CFT of a string theory in anti-time Sitter spacetime and those in the dual CFT. Feynman integrals with fermionic legs. Mellin amplitudes and illustrate the general features. Finally we look at the OPE in the context of holography and derive a set of theory. OPE coefficients in the worldsheet CFT of a string theory in anti-time Sitter spacetime and those in the dual CFT. Feynman integrals with fermionic legs. Mellin amplitudes and illustrate the general features. Finally we look at the OPE in the context of holography and derive a set of theory. OPE coefficients in the worldsheet CFT of a string theory in anti-time Sitter spacetime and those in the dual CFT." @default.
- W2894393857 created "2018-10-05" @default.
- W2894393857 creator A5005256641 @default.
- W2894393857 date "2018-09-11" @default.
- W2894393857 modified "2023-09-27" @default.
- W2894393857 title "Analytical Methods for Conformal Field Theory" @default.
- W2894393857 doi "https://doi.org/10.18452/19406" @default.
- W2894393857 hasPublicationYear "2018" @default.
- W2894393857 type Work @default.
- W2894393857 sameAs 2894393857 @default.
- W2894393857 citedByCount "0" @default.
- W2894393857 crossrefType "dissertation" @default.
- W2894393857 hasAuthorship W2894393857A5005256641 @default.
- W2894393857 hasConcept C104317684 @default.
- W2894393857 hasConcept C115047598 @default.
- W2894393857 hasConcept C121332964 @default.
- W2894393857 hasConcept C134306372 @default.
- W2894393857 hasConcept C150523333 @default.
- W2894393857 hasConcept C158448853 @default.
- W2894393857 hasConcept C17020691 @default.
- W2894393857 hasConcept C173848574 @default.
- W2894393857 hasConcept C18199665 @default.
- W2894393857 hasConcept C185592680 @default.
- W2894393857 hasConcept C197067312 @default.
- W2894393857 hasConcept C2524010 @default.
- W2894393857 hasConcept C2777345500 @default.
- W2894393857 hasConcept C33923547 @default.
- W2894393857 hasConcept C37914503 @default.
- W2894393857 hasConcept C54613284 @default.
- W2894393857 hasConcept C55493867 @default.
- W2894393857 hasConcept C5667645 @default.
- W2894393857 hasConcept C57691317 @default.
- W2894393857 hasConcept C62520636 @default.
- W2894393857 hasConcept C86339819 @default.
- W2894393857 hasConcept C98214594 @default.
- W2894393857 hasConceptScore W2894393857C104317684 @default.
- W2894393857 hasConceptScore W2894393857C115047598 @default.
- W2894393857 hasConceptScore W2894393857C121332964 @default.
- W2894393857 hasConceptScore W2894393857C134306372 @default.
- W2894393857 hasConceptScore W2894393857C150523333 @default.
- W2894393857 hasConceptScore W2894393857C158448853 @default.
- W2894393857 hasConceptScore W2894393857C17020691 @default.
- W2894393857 hasConceptScore W2894393857C173848574 @default.
- W2894393857 hasConceptScore W2894393857C18199665 @default.
- W2894393857 hasConceptScore W2894393857C185592680 @default.
- W2894393857 hasConceptScore W2894393857C197067312 @default.
- W2894393857 hasConceptScore W2894393857C2524010 @default.
- W2894393857 hasConceptScore W2894393857C2777345500 @default.
- W2894393857 hasConceptScore W2894393857C33923547 @default.
- W2894393857 hasConceptScore W2894393857C37914503 @default.
- W2894393857 hasConceptScore W2894393857C54613284 @default.
- W2894393857 hasConceptScore W2894393857C55493867 @default.
- W2894393857 hasConceptScore W2894393857C5667645 @default.
- W2894393857 hasConceptScore W2894393857C57691317 @default.
- W2894393857 hasConceptScore W2894393857C62520636 @default.
- W2894393857 hasConceptScore W2894393857C86339819 @default.
- W2894393857 hasConceptScore W2894393857C98214594 @default.
- W2894393857 hasLocation W28943938571 @default.
- W2894393857 hasOpenAccess W2894393857 @default.
- W2894393857 hasPrimaryLocation W28943938571 @default.
- W2894393857 hasRelatedWork W1563302999 @default.
- W2894393857 hasRelatedWork W2010931423 @default.
- W2894393857 hasRelatedWork W2057996037 @default.
- W2894393857 hasRelatedWork W2126339569 @default.
- W2894393857 hasRelatedWork W2154996265 @default.
- W2894393857 hasRelatedWork W2288577849 @default.
- W2894393857 hasRelatedWork W2302542679 @default.
- W2894393857 hasRelatedWork W248409089 @default.
- W2894393857 hasRelatedWork W2766707216 @default.
- W2894393857 hasRelatedWork W2769041715 @default.
- W2894393857 hasRelatedWork W2804822355 @default.
- W2894393857 hasRelatedWork W2924924323 @default.
- W2894393857 hasRelatedWork W2950078996 @default.
- W2894393857 hasRelatedWork W3098019264 @default.
- W2894393857 hasRelatedWork W3100364784 @default.
- W2894393857 hasRelatedWork W3101794557 @default.
- W2894393857 hasRelatedWork W3103746400 @default.
- W2894393857 hasRelatedWork W3104130670 @default.
- W2894393857 hasRelatedWork W3105321404 @default.
- W2894393857 hasRelatedWork W3105413235 @default.
- W2894393857 isParatext "false" @default.
- W2894393857 isRetracted "false" @default.
- W2894393857 magId "2894393857" @default.
- W2894393857 workType "dissertation" @default.