Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894394758> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2894394758 abstract "Let $G$ be a regular graph of degree $d$ and let $Asubset V(G)$. Say that $A$ is $eta$-closed if the average degree of the subgraph induced by $A$ is at least $eta d$. This says that if we choose a random vertex $xin A$ and a random neighbour $y$ of $x$, then the probability that $yin A$ is at least $eta$. The work of this paper was motivated by an attempt to obtain a qualitative description of closed subsets of the Cayley graph $Gamma$ whose vertex set is $mathbb F_2^{n_1}otimes dots otimes mathbb F_2^{n_d}$ with two vertices joined by an edge if their difference is of the form $u_1otimes cdots otimes u_d$. For the matrix case (that is, when $d=2$), such a description was obtained by Khot, Minzer and Safra, a breakthrough that completed the proof of the 2-to-2 conjecture. In this paper, we formulate a conjecture for higher dimensions, and prove it in an important special case. Also, we identify a statement about $eta$-closed sets in Cayley graphs on arbitrary finite Abelian groups that implies the conjecture and can be considered as a highly asymmetric Balog-Szemer'edi-Gowers theorem when it holds. We conclude the paper by showing that this statement is not true for an arbitrary Cayley graph. It remains to decide whether the statement can be proved for the Cayley graph $Gamma$." @default.
- W2894394758 created "2018-10-05" @default.
- W2894394758 creator A5011824933 @default.
- W2894394758 creator A5046740352 @default.
- W2894394758 date "2018-09-28" @default.
- W2894394758 modified "2023-09-27" @default.
- W2894394758 title "Subsets of Cayley graphs that induce many edges" @default.
- W2894394758 cites W2002240881 @default.
- W2894394758 cites W2120358419 @default.
- W2894394758 cites W2787022562 @default.
- W2894394758 cites W2798524658 @default.
- W2894394758 hasPublicationYear "2018" @default.
- W2894394758 type Work @default.
- W2894394758 sameAs 2894394758 @default.
- W2894394758 citedByCount "0" @default.
- W2894394758 crossrefType "posted-content" @default.
- W2894394758 hasAuthorship W2894394758A5011824933 @default.
- W2894394758 hasAuthorship W2894394758A5046740352 @default.
- W2894394758 hasConcept C114614502 @default.
- W2894394758 hasConcept C118615104 @default.
- W2894394758 hasConcept C120204988 @default.
- W2894394758 hasConcept C132525143 @default.
- W2894394758 hasConcept C136170076 @default.
- W2894394758 hasConcept C17744445 @default.
- W2894394758 hasConcept C199539241 @default.
- W2894394758 hasConcept C2777026412 @default.
- W2894394758 hasConcept C2780990831 @default.
- W2894394758 hasConcept C33923547 @default.
- W2894394758 hasConcept C80899671 @default.
- W2894394758 hasConceptScore W2894394758C114614502 @default.
- W2894394758 hasConceptScore W2894394758C118615104 @default.
- W2894394758 hasConceptScore W2894394758C120204988 @default.
- W2894394758 hasConceptScore W2894394758C132525143 @default.
- W2894394758 hasConceptScore W2894394758C136170076 @default.
- W2894394758 hasConceptScore W2894394758C17744445 @default.
- W2894394758 hasConceptScore W2894394758C199539241 @default.
- W2894394758 hasConceptScore W2894394758C2777026412 @default.
- W2894394758 hasConceptScore W2894394758C2780990831 @default.
- W2894394758 hasConceptScore W2894394758C33923547 @default.
- W2894394758 hasConceptScore W2894394758C80899671 @default.
- W2894394758 hasLocation W28943947581 @default.
- W2894394758 hasOpenAccess W2894394758 @default.
- W2894394758 hasPrimaryLocation W28943947581 @default.
- W2894394758 hasRelatedWork W1650240946 @default.
- W2894394758 hasRelatedWork W1778521510 @default.
- W2894394758 hasRelatedWork W2013467167 @default.
- W2894394758 hasRelatedWork W2065971189 @default.
- W2894394758 hasRelatedWork W2079643325 @default.
- W2894394758 hasRelatedWork W2284243945 @default.
- W2894394758 hasRelatedWork W2491086478 @default.
- W2894394758 hasRelatedWork W2582264901 @default.
- W2894394758 hasRelatedWork W2734396578 @default.
- W2894394758 hasRelatedWork W2912886422 @default.
- W2894394758 hasRelatedWork W2949770414 @default.
- W2894394758 hasRelatedWork W2979697317 @default.
- W2894394758 hasRelatedWork W3002875349 @default.
- W2894394758 hasRelatedWork W3013011289 @default.
- W2894394758 hasRelatedWork W3015108272 @default.
- W2894394758 hasRelatedWork W3081824977 @default.
- W2894394758 hasRelatedWork W3106333994 @default.
- W2894394758 hasRelatedWork W3109539282 @default.
- W2894394758 hasRelatedWork W3141567130 @default.
- W2894394758 hasRelatedWork W2586910513 @default.
- W2894394758 isParatext "false" @default.
- W2894394758 isRetracted "false" @default.
- W2894394758 magId "2894394758" @default.
- W2894394758 workType "article" @default.