Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894398812> ?p ?o ?g. }
- W2894398812 endingPage "32" @default.
- W2894398812 startingPage "32" @default.
- W2894398812 abstract "Background: Artificial intelligence is advancing at an accelerated pace into clinical applications, providing opportunities for increased efficiency, improved accuracy, and cost savings through computer-aided diagnostics. Dermatopathology, with emphasis on pattern recognition, offers a unique opportunity for testing deep learning algorithms. Aims: This study aims to determine the accuracy of deep learning algorithms to diagnose three common dermatopathology diagnoses. Methods: Whole slide images (WSI) of previously diagnosed nodular basal cell carcinomas (BCCs), dermal nevi, and seborrheic keratoses were annotated for areas of distinct morphology. Unannotated WSIs, consisting of five distractor diagnoses of common neoplastic and inflammatory diagnoses, were included in each training set. A proprietary fully convolutional neural network was developed to train algorithms to classify test images as positive or negative relative to ground truth diagnosis. Results: Artificial intelligence system accurately classified 123/124 (99.45%) BCCs (nodular), 113/114 (99.4%) dermal nevi, and 123/123 (100%) seborrheic keratoses. Conclusions: Artificial intelligence using deep learning algorithms is a potential adjunct to diagnosis and may result in improved workflow efficiencies for dermatopathologists and laboratories." @default.
- W2894398812 created "2018-10-05" @default.
- W2894398812 creator A5007735208 @default.
- W2894398812 creator A5007749841 @default.
- W2894398812 creator A5018471129 @default.
- W2894398812 creator A5019646348 @default.
- W2894398812 creator A5045011448 @default.
- W2894398812 creator A5049200130 @default.
- W2894398812 creator A5075153336 @default.
- W2894398812 creator A5091680138 @default.
- W2894398812 date "2018-01-01" @default.
- W2894398812 modified "2023-10-01" @default.
- W2894398812 title "Diagnostic Performance of Deep Learning Algorithms Applied to Three Common Diagnoses in Dermatopathology" @default.
- W2894398812 cites W1548827537 @default.
- W2894398812 cites W1608167060 @default.
- W2894398812 cites W1842161061 @default.
- W2894398812 cites W1932469787 @default.
- W2894398812 cites W1964421503 @default.
- W2894398812 cites W1971399443 @default.
- W2894398812 cites W1974195684 @default.
- W2894398812 cites W1977653087 @default.
- W2894398812 cites W1979622938 @default.
- W2894398812 cites W1988213096 @default.
- W2894398812 cites W2015897140 @default.
- W2894398812 cites W2025623420 @default.
- W2894398812 cites W2033996800 @default.
- W2894398812 cites W2055965251 @default.
- W2894398812 cites W2078437730 @default.
- W2894398812 cites W2079428324 @default.
- W2894398812 cites W2095000512 @default.
- W2894398812 cites W2096064271 @default.
- W2894398812 cites W2104636679 @default.
- W2894398812 cites W2132031490 @default.
- W2894398812 cites W2290195065 @default.
- W2894398812 cites W2395611524 @default.
- W2894398812 cites W2460896619 @default.
- W2894398812 cites W2470965540 @default.
- W2894398812 cites W2504150216 @default.
- W2894398812 cites W2507159593 @default.
- W2894398812 cites W2519019522 @default.
- W2894398812 cites W2531860694 @default.
- W2894398812 cites W2581082771 @default.
- W2894398812 cites W2594760301 @default.
- W2894398812 cites W2618999197 @default.
- W2894398812 cites W2740932666 @default.
- W2894398812 cites W2748339352 @default.
- W2894398812 cites W2751555288 @default.
- W2894398812 cites W2763457723 @default.
- W2894398812 cites W2767381938 @default.
- W2894398812 cites W2772723798 @default.
- W2894398812 cites W2774292910 @default.
- W2894398812 cites W4243547956 @default.
- W2894398812 doi "https://doi.org/10.4103/jpi.jpi_31_18" @default.
- W2894398812 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6166480" @default.
- W2894398812 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30294501" @default.
- W2894398812 hasPublicationYear "2018" @default.
- W2894398812 type Work @default.
- W2894398812 sameAs 2894398812 @default.
- W2894398812 citedByCount "69" @default.
- W2894398812 countsByYear W28943988122019 @default.
- W2894398812 countsByYear W28943988122020 @default.
- W2894398812 countsByYear W28943988122021 @default.
- W2894398812 countsByYear W28943988122022 @default.
- W2894398812 countsByYear W28943988122023 @default.
- W2894398812 crossrefType "journal-article" @default.
- W2894398812 hasAuthorship W2894398812A5007735208 @default.
- W2894398812 hasAuthorship W2894398812A5007749841 @default.
- W2894398812 hasAuthorship W2894398812A5018471129 @default.
- W2894398812 hasAuthorship W2894398812A5019646348 @default.
- W2894398812 hasAuthorship W2894398812A5045011448 @default.
- W2894398812 hasAuthorship W2894398812A5049200130 @default.
- W2894398812 hasAuthorship W2894398812A5075153336 @default.
- W2894398812 hasAuthorship W2894398812A5091680138 @default.
- W2894398812 hasBestOaLocation W28943988121 @default.
- W2894398812 hasConcept C108583219 @default.
- W2894398812 hasConcept C11413529 @default.
- W2894398812 hasConcept C119857082 @default.
- W2894398812 hasConcept C126838900 @default.
- W2894398812 hasConcept C142724271 @default.
- W2894398812 hasConcept C154945302 @default.
- W2894398812 hasConcept C16005928 @default.
- W2894398812 hasConcept C2776032170 @default.
- W2894398812 hasConcept C2777522853 @default.
- W2894398812 hasConcept C2777845685 @default.
- W2894398812 hasConcept C3020132585 @default.
- W2894398812 hasConcept C41008148 @default.
- W2894398812 hasConcept C534262118 @default.
- W2894398812 hasConcept C71924100 @default.
- W2894398812 hasConcept C81363708 @default.
- W2894398812 hasConceptScore W2894398812C108583219 @default.
- W2894398812 hasConceptScore W2894398812C11413529 @default.
- W2894398812 hasConceptScore W2894398812C119857082 @default.
- W2894398812 hasConceptScore W2894398812C126838900 @default.
- W2894398812 hasConceptScore W2894398812C142724271 @default.
- W2894398812 hasConceptScore W2894398812C154945302 @default.
- W2894398812 hasConceptScore W2894398812C16005928 @default.
- W2894398812 hasConceptScore W2894398812C2776032170 @default.
- W2894398812 hasConceptScore W2894398812C2777522853 @default.