Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894410938> ?p ?o ?g. }
- W2894410938 endingPage "12" @default.
- W2894410938 startingPage "1" @default.
- W2894410938 abstract "Multi-Criteria Decision Analysis (MCDA) requires a critical step, namely to elicit individual preferences. On the basis of learning theories, we formalize preference construction as learning about facts and values, and as a process; we also conceptualize an online preference elicitation survey that offers learning loops to increase factual learning and support preference construction. Another originality is gamification. Game elements (a narrative and non-player characters as motivational affordance) keep respondents engaged in the demanding task of weight elicitation. Our tool enables broad public participation in MCDA, allowing reliable online preference elicitation. The survey concept was tested with 107 students and a control treatment. Quantitative and qualitative data indicate that the concept works. Participants’ factual knowledge increased. The survey helped students to learn about their own preferences concerning the importance of objectives. The practical implication is that weighting can be reliably elicited by online surveys. Participants reported a positive experience; further ways to improve it are thoroughly discussed." @default.
- W2894410938 created "2018-10-05" @default.
- W2894410938 creator A5022612244 @default.
- W2894410938 creator A5089631059 @default.
- W2894410938 date "2019-01-01" @default.
- W2894410938 modified "2023-10-14" @default.
- W2894410938 title "Gamified online survey to elicit citizens’ preferences and enhance learning for environmental decisions" @default.
- W2894410938 cites W1553909701 @default.
- W2894410938 cites W1595988478 @default.
- W2894410938 cites W1713612582 @default.
- W2894410938 cites W1848589595 @default.
- W2894410938 cites W1938670616 @default.
- W2894410938 cites W1967349742 @default.
- W2894410938 cites W1967550953 @default.
- W2894410938 cites W1970131054 @default.
- W2894410938 cites W1973622837 @default.
- W2894410938 cites W1976162738 @default.
- W2894410938 cites W1985793242 @default.
- W2894410938 cites W1989402006 @default.
- W2894410938 cites W1999943693 @default.
- W2894410938 cites W2023062420 @default.
- W2894410938 cites W2062716960 @default.
- W2894410938 cites W2065071081 @default.
- W2894410938 cites W2065329875 @default.
- W2894410938 cites W2065800536 @default.
- W2894410938 cites W2069821661 @default.
- W2894410938 cites W2073331250 @default.
- W2894410938 cites W2074661087 @default.
- W2894410938 cites W2077842969 @default.
- W2894410938 cites W2093240945 @default.
- W2894410938 cites W2093508029 @default.
- W2894410938 cites W2097821045 @default.
- W2894410938 cites W2102719717 @default.
- W2894410938 cites W2124395325 @default.
- W2894410938 cites W2141084584 @default.
- W2894410938 cites W2155931118 @default.
- W2894410938 cites W2156932694 @default.
- W2894410938 cites W2165754630 @default.
- W2894410938 cites W2165796223 @default.
- W2894410938 cites W2169588654 @default.
- W2894410938 cites W2229624457 @default.
- W2894410938 cites W2290217614 @default.
- W2894410938 cites W2299715047 @default.
- W2894410938 cites W2346695769 @default.
- W2894410938 cites W2479485957 @default.
- W2894410938 cites W2593717474 @default.
- W2894410938 cites W2597424331 @default.
- W2894410938 cites W2797968832 @default.
- W2894410938 cites W3121424994 @default.
- W2894410938 cites W3124219466 @default.
- W2894410938 cites W3126120214 @default.
- W2894410938 cites W856213105 @default.
- W2894410938 doi "https://doi.org/10.1016/j.envsoft.2018.09.013" @default.
- W2894410938 hasPublicationYear "2019" @default.
- W2894410938 type Work @default.
- W2894410938 sameAs 2894410938 @default.
- W2894410938 citedByCount "27" @default.
- W2894410938 countsByYear W28944109382018 @default.
- W2894410938 countsByYear W28944109382019 @default.
- W2894410938 countsByYear W28944109382020 @default.
- W2894410938 countsByYear W28944109382021 @default.
- W2894410938 countsByYear W28944109382022 @default.
- W2894410938 countsByYear W28944109382023 @default.
- W2894410938 crossrefType "journal-article" @default.
- W2894410938 hasAuthorship W2894410938A5022612244 @default.
- W2894410938 hasAuthorship W2894410938A5089631059 @default.
- W2894410938 hasBestOaLocation W28944109382 @default.
- W2894410938 hasConcept C105795698 @default.
- W2894410938 hasConcept C11012388 @default.
- W2894410938 hasConcept C111919701 @default.
- W2894410938 hasConcept C126838900 @default.
- W2894410938 hasConcept C127413603 @default.
- W2894410938 hasConcept C15744967 @default.
- W2894410938 hasConcept C180747234 @default.
- W2894410938 hasConcept C183115368 @default.
- W2894410938 hasConcept C194995250 @default.
- W2894410938 hasConcept C201995342 @default.
- W2894410938 hasConcept C2776950860 @default.
- W2894410938 hasConcept C2777868144 @default.
- W2894410938 hasConcept C2780451532 @default.
- W2894410938 hasConcept C2781249084 @default.
- W2894410938 hasConcept C33923547 @default.
- W2894410938 hasConcept C41008148 @default.
- W2894410938 hasConcept C56739046 @default.
- W2894410938 hasConcept C71924100 @default.
- W2894410938 hasConcept C77805123 @default.
- W2894410938 hasConcept C98045186 @default.
- W2894410938 hasConceptScore W2894410938C105795698 @default.
- W2894410938 hasConceptScore W2894410938C11012388 @default.
- W2894410938 hasConceptScore W2894410938C111919701 @default.
- W2894410938 hasConceptScore W2894410938C126838900 @default.
- W2894410938 hasConceptScore W2894410938C127413603 @default.
- W2894410938 hasConceptScore W2894410938C15744967 @default.
- W2894410938 hasConceptScore W2894410938C180747234 @default.
- W2894410938 hasConceptScore W2894410938C183115368 @default.
- W2894410938 hasConceptScore W2894410938C194995250 @default.
- W2894410938 hasConceptScore W2894410938C201995342 @default.
- W2894410938 hasConceptScore W2894410938C2776950860 @default.