Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894422841> ?p ?o ?g. }
- W2894422841 abstract "Orientation field (OF) plays a very significant role in automatic fingerprint recognition systems. Many algorithms have been proposed for the estimation of fingerprints' OF but it is hard to solve the dilemma of correcting spurious ridge structure and avoiding singularity location deviation, especially for poor images. So far, the following drawbacks still need to be solved for OF construction methods for practical application: (1) How to adaptively choose block scales to resolve the contradiction between accuracy and anti-noise, since small scale is beneficial to accuracy but is sensitive to noise, while large scale is more resistant to noise, but the accuracy is deteriorated. (2) How to construct the genuine OF in the areas close-by singular points and to evade singularity location deviation? Current block based methods give spurious OF estimates in the area near singular points because these areas have large curvature thus the detected singular points deviate from the genuine localizations. When these singular points are used as the anchor for referencing minutiae, it makes the average error of matching or recognition even larger. Therefore, it is essentials to construct the genuine OF in the areas close-by singular points and to evade singularity deviation.To overcome the above-mentioned limitations, a novel method, combining a weighted multi-scale composite window (WMCM) with a hierarchical smoothing strategy has been proposed for the computation of fingerprint OF. This method mainly contains two procedures: the approximate OF estimation and the hierarchical OF smoothing. In the first procedure, a series of OFs are established under multiple scales of composite windows by using a gradient based method then a coarse OF is estimated using the weight of each scale determined by a squared gradient consistency. In the second procedure, the OF is first quantized into a two-digitized orientation zone and a two-orientation-zone filtering strategy is adapted to the OF blocks based on a filtering mask obtained after eliminating the isolated blocks. In the end a similar three-digitized orientation zone is performed to obtain an accurate and smooth OF. To validate the performance, the proposed method has been applied to OF computation using the FVC2004 databases and three experiments are designed. Experiment 1 aims to validate whether the weighted multi-scale composite window can balance the dilemma of accuracy and robustness more effectively than the previous works do. Experiment 2 is designed to examine whether the hierarchical smoothing method can correct the spurious ridge flow and preserve the genuine localization of singular points. The purpose of experiment 3 is to test the performance of the proposed method on OF reconstruction in low quality fingerprint images. The fingerprint databases FVC 2004 DB1-DB4 are employed in this study.The results of experiment I shows that the proposed method is capable to extract the information of OF reliably and it is more robust against singularity localization deviation in comparison with the other three gradient based methods. The results of experiment II indicates that the proposed smoothing method can balance the contradiction in correcting spurious ridge structures and preserving genuine singularity localization. The results of experiment III illustrates that our approach combing WMCW with the hierarchical smoothing method is capable to extract the information of OF ridge reliably and it is more robust against singularity deviation in comparison with the other three gradient based methods. In a word, the experiment results demonstrate that the proposed method can correct spurious ridge structure and meanwhile avoid singularity deviation compared with the previous works.A novel gradient based algorithm has been proposed which is more reliable for the estimation of the ridge information for fingerprint OF and is more accurate in preserving the singularity localization. Compared with the previously proposed gradient based methods, the advantages of the proposed RBSF lie in three aspects. Firstly a weighted multi-scale composite window is put forward to replace the single window used by conventional gradient based methods and to adaptively choose the scales of the blocks. Secondly, a hierarchical smoothing strategy is proposed to enhance the OF by using the two-orientation-zone filtering and the three-orientation-zone filtering, aiming to correct the spurious ridges and preserving the genuine location of singular points. Finally, three experiments are designed to test the proposed algorithm together with other popular gradient based methods on real fingerprint images, which are selected from different categories and all are suffering from obvious noise effects. All the experiment results show that the proposed method is superior with respect to reliable OF construction and avoiding singularity localization deviation." @default.
- W2894422841 created "2018-10-05" @default.
- W2894422841 creator A5006736256 @default.
- W2894422841 creator A5017535979 @default.
- W2894422841 creator A5021895719 @default.
- W2894422841 creator A5037665380 @default.
- W2894422841 creator A5042560788 @default.
- W2894422841 creator A5051239079 @default.
- W2894422841 creator A5062054308 @default.
- W2894422841 creator A5089559746 @default.
- W2894422841 date "2018-10-01" @default.
- W2894422841 modified "2023-10-15" @default.
- W2894422841 title "Combining multi-scale composite windows with hierarchical smoothing strategy for fingerprint orientation field computation" @default.
- W2894422841 cites W1970693754 @default.
- W2894422841 cites W2005447824 @default.
- W2894422841 cites W2005629909 @default.
- W2894422841 cites W2010300097 @default.
- W2894422841 cites W2014470493 @default.
- W2894422841 cites W2015721555 @default.
- W2894422841 cites W2016369756 @default.
- W2894422841 cites W2018530017 @default.
- W2894422841 cites W2023626880 @default.
- W2894422841 cites W2023754493 @default.
- W2894422841 cites W2045870530 @default.
- W2894422841 cites W2048887159 @default.
- W2894422841 cites W2055227858 @default.
- W2894422841 cites W2060366714 @default.
- W2894422841 cites W2062558966 @default.
- W2894422841 cites W2095319544 @default.
- W2894422841 cites W2095773423 @default.
- W2894422841 cites W2099406540 @default.
- W2894422841 cites W2105183220 @default.
- W2894422841 cites W2124874699 @default.
- W2894422841 cites W2136806907 @default.
- W2894422841 cites W2144127923 @default.
- W2894422841 cites W2149700829 @default.
- W2894422841 cites W2530186022 @default.
- W2894422841 cites W2587898740 @default.
- W2894422841 cites W4248506240 @default.
- W2894422841 doi "https://doi.org/10.1186/s12938-018-0559-4" @default.
- W2894422841 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6167869" @default.
- W2894422841 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30285765" @default.
- W2894422841 hasPublicationYear "2018" @default.
- W2894422841 type Work @default.
- W2894422841 sameAs 2894422841 @default.
- W2894422841 citedByCount "4" @default.
- W2894422841 countsByYear W28944228412019 @default.
- W2894422841 countsByYear W28944228412020 @default.
- W2894422841 countsByYear W28944228412023 @default.
- W2894422841 crossrefType "journal-article" @default.
- W2894422841 hasAuthorship W2894422841A5006736256 @default.
- W2894422841 hasAuthorship W2894422841A5017535979 @default.
- W2894422841 hasAuthorship W2894422841A5021895719 @default.
- W2894422841 hasAuthorship W2894422841A5037665380 @default.
- W2894422841 hasAuthorship W2894422841A5042560788 @default.
- W2894422841 hasAuthorship W2894422841A5051239079 @default.
- W2894422841 hasAuthorship W2894422841A5062054308 @default.
- W2894422841 hasAuthorship W2894422841A5089559746 @default.
- W2894422841 hasBestOaLocation W28944228411 @default.
- W2894422841 hasConcept C11413529 @default.
- W2894422841 hasConcept C115961682 @default.
- W2894422841 hasConcept C119857082 @default.
- W2894422841 hasConcept C121332964 @default.
- W2894422841 hasConcept C153180895 @default.
- W2894422841 hasConcept C154945302 @default.
- W2894422841 hasConcept C16171025 @default.
- W2894422841 hasConcept C16345878 @default.
- W2894422841 hasConcept C168406668 @default.
- W2894422841 hasConcept C2524010 @default.
- W2894422841 hasConcept C2777826928 @default.
- W2894422841 hasConcept C2778755073 @default.
- W2894422841 hasConcept C31972630 @default.
- W2894422841 hasConcept C33923547 @default.
- W2894422841 hasConcept C3770464 @default.
- W2894422841 hasConcept C41008148 @default.
- W2894422841 hasConcept C45374587 @default.
- W2894422841 hasConcept C62520636 @default.
- W2894422841 hasConcept C67174900 @default.
- W2894422841 hasConcept C97256817 @default.
- W2894422841 hasConcept C99498987 @default.
- W2894422841 hasConceptScore W2894422841C11413529 @default.
- W2894422841 hasConceptScore W2894422841C115961682 @default.
- W2894422841 hasConceptScore W2894422841C119857082 @default.
- W2894422841 hasConceptScore W2894422841C121332964 @default.
- W2894422841 hasConceptScore W2894422841C153180895 @default.
- W2894422841 hasConceptScore W2894422841C154945302 @default.
- W2894422841 hasConceptScore W2894422841C16171025 @default.
- W2894422841 hasConceptScore W2894422841C16345878 @default.
- W2894422841 hasConceptScore W2894422841C168406668 @default.
- W2894422841 hasConceptScore W2894422841C2524010 @default.
- W2894422841 hasConceptScore W2894422841C2777826928 @default.
- W2894422841 hasConceptScore W2894422841C2778755073 @default.
- W2894422841 hasConceptScore W2894422841C31972630 @default.
- W2894422841 hasConceptScore W2894422841C33923547 @default.
- W2894422841 hasConceptScore W2894422841C3770464 @default.
- W2894422841 hasConceptScore W2894422841C41008148 @default.
- W2894422841 hasConceptScore W2894422841C45374587 @default.
- W2894422841 hasConceptScore W2894422841C62520636 @default.
- W2894422841 hasConceptScore W2894422841C67174900 @default.
- W2894422841 hasConceptScore W2894422841C97256817 @default.