Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894436452> ?p ?o ?g. }
- W2894436452 endingPage "306" @default.
- W2894436452 startingPage "294" @default.
- W2894436452 abstract "Protein nitration and nitrosylation are essential post-translational modifications (PTMs) involved in many fundamental cellular processes. Recent studies have revealed that excessive levels of nitration and nitrosylation in some critical proteins are linked to numerous chronic diseases. Therefore, the identification of substrates that undergo such modifications in a site-specific manner is an important research topic in the community and will provide candidates for targeted therapy. In this study, we aimed to develop a computational tool for predicting nitration and nitrosylation sites in proteins. We first constructed four types of encoding features, including positional amino acid distributions, sequence contextual dependencies, physicochemical properties, and position-specific scoring features, to represent the modified residues. Based on these encoding features, we established a predictor called DeepNitro using deep learning methods for predicting protein nitration and nitrosylation. Using n-fold cross-validation, our evaluation shows great AUC values for DeepNitro, 0.65 for tyrosine nitration, 0.80 for tryptophan nitration, and 0.70 for cysteine nitrosylation, respectively, demonstrating the robustness and reliability of our tool. Also, when tested in the independent dataset, DeepNitro is substantially superior to other similar tools with a 7%-42% improvement in the prediction performance. Taken together, the application of deep learning method and novel encoding schemes, especially the position-specific scoring feature, greatly improves the accuracy of nitration and nitrosylation site prediction and may facilitate the prediction of other PTM sites. DeepNitro is implemented in JAVA and PHP and is freely available for academic research at http://deepnitro.renlab.org." @default.
- W2894436452 created "2018-10-05" @default.
- W2894436452 creator A5011591661 @default.
- W2894436452 creator A5022536823 @default.
- W2894436452 creator A5022770208 @default.
- W2894436452 creator A5032071728 @default.
- W2894436452 creator A5037989560 @default.
- W2894436452 creator A5046394986 @default.
- W2894436452 creator A5049930476 @default.
- W2894436452 creator A5052691524 @default.
- W2894436452 creator A5065798474 @default.
- W2894436452 creator A5090129059 @default.
- W2894436452 date "2018-08-01" @default.
- W2894436452 modified "2023-10-15" @default.
- W2894436452 title "DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning" @default.
- W2894436452 cites W1019830208 @default.
- W2894436452 cites W1147349766 @default.
- W2894436452 cites W1269597682 @default.
- W2894436452 cites W1551871256 @default.
- W2894436452 cites W1973864912 @default.
- W2894436452 cites W1974358158 @default.
- W2894436452 cites W1981189544 @default.
- W2894436452 cites W1986655133 @default.
- W2894436452 cites W1992205536 @default.
- W2894436452 cites W1997023449 @default.
- W2894436452 cites W2004806037 @default.
- W2894436452 cites W2011582941 @default.
- W2894436452 cites W2021945571 @default.
- W2894436452 cites W2022965734 @default.
- W2894436452 cites W2028549892 @default.
- W2894436452 cites W2034890309 @default.
- W2894436452 cites W2058786544 @default.
- W2894436452 cites W2067469800 @default.
- W2894436452 cites W2069349400 @default.
- W2894436452 cites W2076455712 @default.
- W2894436452 cites W2078672958 @default.
- W2894436452 cites W2085850480 @default.
- W2894436452 cites W2094092033 @default.
- W2894436452 cites W2101291993 @default.
- W2894436452 cites W2104189207 @default.
- W2894436452 cites W2108101947 @default.
- W2894436452 cites W2136922672 @default.
- W2894436452 cites W2141818629 @default.
- W2894436452 cites W2144015117 @default.
- W2894436452 cites W2152746956 @default.
- W2894436452 cites W2155696453 @default.
- W2894436452 cites W2160815625 @default.
- W2894436452 cites W2164545630 @default.
- W2894436452 cites W2165321759 @default.
- W2894436452 cites W2346667261 @default.
- W2894436452 cites W2518134670 @default.
- W2894436452 cites W2528092473 @default.
- W2894436452 cites W2530055109 @default.
- W2894436452 cites W2582187633 @default.
- W2894436452 cites W2919115771 @default.
- W2894436452 doi "https://doi.org/10.1016/j.gpb.2018.04.007" @default.
- W2894436452 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6205083" @default.
- W2894436452 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30268931" @default.
- W2894436452 hasPublicationYear "2018" @default.
- W2894436452 type Work @default.
- W2894436452 sameAs 2894436452 @default.
- W2894436452 citedByCount "64" @default.
- W2894436452 countsByYear W28944364522018 @default.
- W2894436452 countsByYear W28944364522019 @default.
- W2894436452 countsByYear W28944364522020 @default.
- W2894436452 countsByYear W28944364522021 @default.
- W2894436452 countsByYear W28944364522022 @default.
- W2894436452 countsByYear W28944364522023 @default.
- W2894436452 crossrefType "journal-article" @default.
- W2894436452 hasAuthorship W2894436452A5011591661 @default.
- W2894436452 hasAuthorship W2894436452A5022536823 @default.
- W2894436452 hasAuthorship W2894436452A5022770208 @default.
- W2894436452 hasAuthorship W2894436452A5032071728 @default.
- W2894436452 hasAuthorship W2894436452A5037989560 @default.
- W2894436452 hasAuthorship W2894436452A5046394986 @default.
- W2894436452 hasAuthorship W2894436452A5049930476 @default.
- W2894436452 hasAuthorship W2894436452A5052691524 @default.
- W2894436452 hasAuthorship W2894436452A5065798474 @default.
- W2894436452 hasAuthorship W2894436452A5090129059 @default.
- W2894436452 hasBestOaLocation W28944364521 @default.
- W2894436452 hasConcept C108583219 @default.
- W2894436452 hasConcept C119857082 @default.
- W2894436452 hasConcept C154945302 @default.
- W2894436452 hasConcept C178790620 @default.
- W2894436452 hasConcept C185592680 @default.
- W2894436452 hasConcept C2775856698 @default.
- W2894436452 hasConcept C41008148 @default.
- W2894436452 hasConcept C70721500 @default.
- W2894436452 hasConcept C86803240 @default.
- W2894436452 hasConceptScore W2894436452C108583219 @default.
- W2894436452 hasConceptScore W2894436452C119857082 @default.
- W2894436452 hasConceptScore W2894436452C154945302 @default.
- W2894436452 hasConceptScore W2894436452C178790620 @default.
- W2894436452 hasConceptScore W2894436452C185592680 @default.
- W2894436452 hasConceptScore W2894436452C2775856698 @default.
- W2894436452 hasConceptScore W2894436452C41008148 @default.
- W2894436452 hasConceptScore W2894436452C70721500 @default.
- W2894436452 hasConceptScore W2894436452C86803240 @default.