Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894436648> ?p ?o ?g. }
- W2894436648 abstract "A principal goal of precision medicine is to identify genomic factors that are predictive of outcomes in complex diseases, to provide better insight into their molecular mechanisms. Based on our current understanding, there are many genomic factors that are likely to be pathogenic in small subpopulations while being rare in the population as a whole. This research introduces a new machine learning method for discovering single nucleotide variants (SNVs), both common and rare, that in a given person are predictive of that person developing a disease or disease outcome.The new method described in this research constructs decision tree models, uses a Bayesian score to evaluate the models, and employs a person-specific search strategy to identify SNVs that are predictive in a subpopulation whose members are similar to the person of interest. This method, called the Personalized Decision Tree Algorithm (PDTA), works by constructing a decision tree model from the data and then identifying a path in the tree that has excellentprediction for the person of interest, or constructing a new path if none of the paths in the tree have excellent prediction.The PDTA was refined iteratively on synthetic data and was experimentally evaluated on five datasets. One of the datasets was synthetic, one was semi-synthetic, and three were biological datasets collected from patients with chronic pancreatitis that included one small genomic dataset, a whole exome dataset, and a whole exome dataset focused on patients with diabetes in chronic pancreatitis. The performance of the method was evaluated using area under the Receiver Operating Characteristic curve and F1 score, as well as the ability to retrieve known and unknown rare SNVs. The PDTA was found to be effective to varying degrees in the datasets that were evaluated, creating parsimonious genetic representations for patient-specific groups, with the potential to discover novel variants." @default.
- W2894436648 created "2018-10-05" @default.
- W2894436648 creator A5018979051 @default.
- W2894436648 date "2018-08-28" @default.
- W2894436648 modified "2023-09-26" @default.
- W2894436648 title "A BAYESIAN APPROACH TO LEARNING DECISION TREES FOR PATIENT-SPECIFIC MODELS" @default.
- W2894436648 cites W142807026 @default.
- W2894436648 cites W1503703685 @default.
- W2894436648 cites W1510747849 @default.
- W2894436648 cites W1511986666 @default.
- W2894436648 cites W1512511032 @default.
- W2894436648 cites W1520493155 @default.
- W2894436648 cites W1526790641 @default.
- W2894436648 cites W1547246444 @default.
- W2894436648 cites W1551066950 @default.
- W2894436648 cites W1563800735 @default.
- W2894436648 cites W1838823657 @default.
- W2894436648 cites W1922498403 @default.
- W2894436648 cites W1926693308 @default.
- W2894436648 cites W1969433149 @default.
- W2894436648 cites W1973878786 @default.
- W2894436648 cites W1978150238 @default.
- W2894436648 cites W1978498418 @default.
- W2894436648 cites W1986750708 @default.
- W2894436648 cites W1993211081 @default.
- W2894436648 cites W1995243958 @default.
- W2894436648 cites W1997718215 @default.
- W2894436648 cites W2006617902 @default.
- W2894436648 cites W2007733142 @default.
- W2894436648 cites W2008906462 @default.
- W2894436648 cites W2012415418 @default.
- W2894436648 cites W2015121141 @default.
- W2894436648 cites W2016400633 @default.
- W2894436648 cites W2019773602 @default.
- W2894436648 cites W2021953032 @default.
- W2894436648 cites W2029401145 @default.
- W2894436648 cites W2035103620 @default.
- W2894436648 cites W2036144540 @default.
- W2894436648 cites W2036210716 @default.
- W2894436648 cites W2038616760 @default.
- W2894436648 cites W2040604172 @default.
- W2894436648 cites W2047956375 @default.
- W2894436648 cites W2048313262 @default.
- W2894436648 cites W2053531041 @default.
- W2894436648 cites W2058815839 @default.
- W2894436648 cites W2059584025 @default.
- W2894436648 cites W2083449603 @default.
- W2894436648 cites W2085404502 @default.
- W2894436648 cites W2086799994 @default.
- W2894436648 cites W2088498795 @default.
- W2894436648 cites W2091583677 @default.
- W2894436648 cites W2096123080 @default.
- W2894436648 cites W2100358697 @default.
- W2894436648 cites W2100999260 @default.
- W2894436648 cites W2101234009 @default.
- W2894436648 cites W2110649917 @default.
- W2894436648 cites W2112676113 @default.
- W2894436648 cites W2115779804 @default.
- W2894436648 cites W2121104475 @default.
- W2894436648 cites W2121146753 @default.
- W2894436648 cites W2122410182 @default.
- W2894436648 cites W2122732537 @default.
- W2894436648 cites W2123211207 @default.
- W2894436648 cites W2124935187 @default.
- W2894436648 cites W2125385355 @default.
- W2894436648 cites W2126832325 @default.
- W2894436648 cites W2129395298 @default.
- W2894436648 cites W2132073122 @default.
- W2894436648 cites W2132390062 @default.
- W2894436648 cites W2134696506 @default.
- W2894436648 cites W2137725693 @default.
- W2894436648 cites W2143778205 @default.
- W2894436648 cites W2143992683 @default.
- W2894436648 cites W2144030129 @default.
- W2894436648 cites W2149003678 @default.
- W2894436648 cites W2150902124 @default.
- W2894436648 cites W2151379166 @default.
- W2894436648 cites W2153391504 @default.
- W2894436648 cites W2157825442 @default.
- W2894436648 cites W2159337959 @default.
- W2894436648 cites W2159629092 @default.
- W2894436648 cites W2161006505 @default.
- W2894436648 cites W2161633633 @default.
- W2894436648 cites W2164215069 @default.
- W2894436648 cites W2167205245 @default.
- W2894436648 cites W2167638767 @default.
- W2894436648 cites W2168175751 @default.
- W2894436648 cites W2170112109 @default.
- W2894436648 cites W2170679550 @default.
- W2894436648 cites W2259741002 @default.
- W2894436648 cites W2282364445 @default.
- W2894436648 cites W2288518720 @default.
- W2894436648 cites W2311376462 @default.
- W2894436648 cites W2328176404 @default.
- W2894436648 cites W2394990651 @default.
- W2894436648 cites W2396252292 @default.
- W2894436648 cites W2403155714 @default.
- W2894436648 cites W2470296744 @default.
- W2894436648 cites W2523369352 @default.
- W2894436648 cites W2556691545 @default.