Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894445194> ?p ?o ?g. }
- W2894445194 endingPage "6126" @default.
- W2894445194 startingPage "6117" @default.
- W2894445194 abstract "The value of protein models obtained with automated protein structure prediction depends primarily on their accuracy. Protein model quality assessment is thus critical to select the model that can best answer biologically relevant questions from an ensemble of predictions. However, despite many advances in the field, different methods capture different types of errors, begging the question of which method to use. We introduce TopScore, a meta Model Quality Assessment Program (meta-MQAP) that uses deep neural networks to combine scores from 15 different primary predictors to predict accurate residue-wise and whole-protein error estimates. The predictions on six large independent data sets are highly correlated to superposition-independent errors in the model, achieving a Pearson's Rall2 of 0.93 and 0.78 for whole-protein and residue-wise error predictions, respectively. This is a significant improvement over any of the investigated primary MQAPs, demonstrating that much can be gained by optimally combining different methods and using different and very large data sets." @default.
- W2894445194 created "2018-10-05" @default.
- W2894445194 creator A5063949219 @default.
- W2894445194 creator A5083015700 @default.
- W2894445194 date "2018-09-25" @default.
- W2894445194 modified "2023-09-24" @default.
- W2894445194 title "TopScore: Using Deep Neural Networks and Large Diverse Data Sets for Accurate Protein Model Quality Assessment" @default.
- W2894445194 cites W1964880253 @default.
- W2894445194 cites W1965517743 @default.
- W2894445194 cites W1966672737 @default.
- W2894445194 cites W1985168592 @default.
- W2894445194 cites W1986191025 @default.
- W2894445194 cites W1997637252 @default.
- W2894445194 cites W1999613945 @default.
- W2894445194 cites W2029377282 @default.
- W2894445194 cites W2030028095 @default.
- W2894445194 cites W2031721366 @default.
- W2894445194 cites W2051854969 @default.
- W2894445194 cites W2052963427 @default.
- W2894445194 cites W2053069893 @default.
- W2894445194 cites W2060792417 @default.
- W2894445194 cites W2062123114 @default.
- W2894445194 cites W2067348533 @default.
- W2894445194 cites W2072132202 @default.
- W2894445194 cites W2087181875 @default.
- W2894445194 cites W2097137621 @default.
- W2894445194 cites W2102245393 @default.
- W2894445194 cites W2103986334 @default.
- W2894445194 cites W2106154817 @default.
- W2894445194 cites W2110483430 @default.
- W2894445194 cites W2113623846 @default.
- W2894445194 cites W2117451312 @default.
- W2894445194 cites W2119068667 @default.
- W2894445194 cites W2120230374 @default.
- W2894445194 cites W2125677968 @default.
- W2894445194 cites W2126711803 @default.
- W2894445194 cites W2140574901 @default.
- W2894445194 cites W2140673705 @default.
- W2894445194 cites W2141783940 @default.
- W2894445194 cites W2142210548 @default.
- W2894445194 cites W2149026172 @default.
- W2894445194 cites W2150434184 @default.
- W2894445194 cites W2150831049 @default.
- W2894445194 cites W2154714625 @default.
- W2894445194 cites W2157938277 @default.
- W2894445194 cites W2159614853 @default.
- W2894445194 cites W2168321064 @default.
- W2894445194 cites W2173669824 @default.
- W2894445194 cites W2287165934 @default.
- W2894445194 cites W2415125288 @default.
- W2894445194 cites W2465351079 @default.
- W2894445194 cites W2534288757 @default.
- W2894445194 cites W2606314633 @default.
- W2894445194 cites W2609811411 @default.
- W2894445194 cites W2616930327 @default.
- W2894445194 cites W4211156111 @default.
- W2894445194 doi "https://doi.org/10.1021/acs.jctc.8b00690" @default.
- W2894445194 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30252470" @default.
- W2894445194 hasPublicationYear "2018" @default.
- W2894445194 type Work @default.
- W2894445194 sameAs 2894445194 @default.
- W2894445194 citedByCount "26" @default.
- W2894445194 countsByYear W28944451942019 @default.
- W2894445194 countsByYear W28944451942020 @default.
- W2894445194 countsByYear W28944451942021 @default.
- W2894445194 countsByYear W28944451942022 @default.
- W2894445194 countsByYear W28944451942023 @default.
- W2894445194 crossrefType "journal-article" @default.
- W2894445194 hasAuthorship W2894445194A5063949219 @default.
- W2894445194 hasAuthorship W2894445194A5083015700 @default.
- W2894445194 hasConcept C119857082 @default.
- W2894445194 hasConcept C121332964 @default.
- W2894445194 hasConcept C124101348 @default.
- W2894445194 hasConcept C127413603 @default.
- W2894445194 hasConcept C134306372 @default.
- W2894445194 hasConcept C154945302 @default.
- W2894445194 hasConcept C18051474 @default.
- W2894445194 hasConcept C200601418 @default.
- W2894445194 hasConcept C202444582 @default.
- W2894445194 hasConcept C27753989 @default.
- W2894445194 hasConcept C3018395757 @default.
- W2894445194 hasConcept C3020001037 @default.
- W2894445194 hasConcept C33923547 @default.
- W2894445194 hasConcept C41008148 @default.
- W2894445194 hasConcept C46141821 @default.
- W2894445194 hasConcept C47701112 @default.
- W2894445194 hasConcept C50644808 @default.
- W2894445194 hasConcept C9652623 @default.
- W2894445194 hasConceptScore W2894445194C119857082 @default.
- W2894445194 hasConceptScore W2894445194C121332964 @default.
- W2894445194 hasConceptScore W2894445194C124101348 @default.
- W2894445194 hasConceptScore W2894445194C127413603 @default.
- W2894445194 hasConceptScore W2894445194C134306372 @default.
- W2894445194 hasConceptScore W2894445194C154945302 @default.
- W2894445194 hasConceptScore W2894445194C18051474 @default.
- W2894445194 hasConceptScore W2894445194C200601418 @default.
- W2894445194 hasConceptScore W2894445194C202444582 @default.
- W2894445194 hasConceptScore W2894445194C27753989 @default.