Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894450523> ?p ?o ?g. }
- W2894450523 endingPage "14" @default.
- W2894450523 startingPage "1" @default.
- W2894450523 abstract "In this book chapter, we discuss how the problem of accelerated materials discovery is related to other computational problems in artificial intelligence, such as computational creativity, concept learning, and invention, as well as to machine-aided discovery in other scientific domains. These connections lead, mathematically, to the emergence of three classes of algorithms that are inspired largely by the approximation-theoretic and machine learning problem of dimensionality reduction, by the information-theoretic problem of data compression, and by the psychology and mass communication problem of holding human attention. The possible utility of functionals including dimension, information [measured in bits], and Bayesian surprise [measured in wows], emerge as part of this description, in addition to measurement of quality in the domain." @default.
- W2894450523 created "2018-10-05" @default.
- W2894450523 creator A5065423139 @default.
- W2894450523 date "2018-01-01" @default.
- W2894450523 modified "2023-10-06" @default.
- W2894450523 title "Dimensions, Bits, and Wows in Accelerating Materials Discovery" @default.
- W2894450523 cites W13968475 @default.
- W2894450523 cites W1510052597 @default.
- W2894450523 cites W1515067367 @default.
- W2894450523 cites W1742512077 @default.
- W2894450523 cites W1977306243 @default.
- W2894450523 cites W1978861212 @default.
- W2894450523 cites W1989151402 @default.
- W2894450523 cites W1990638244 @default.
- W2894450523 cites W1992985800 @default.
- W2894450523 cites W2001141328 @default.
- W2894450523 cites W2014967702 @default.
- W2894450523 cites W2019515298 @default.
- W2894450523 cites W2020494112 @default.
- W2894450523 cites W2031724611 @default.
- W2894450523 cites W2039347020 @default.
- W2894450523 cites W2039546655 @default.
- W2894450523 cites W2046695302 @default.
- W2894450523 cites W2046893754 @default.
- W2894450523 cites W2053186076 @default.
- W2894450523 cites W2060677448 @default.
- W2894450523 cites W2071128523 @default.
- W2894450523 cites W2077350988 @default.
- W2894450523 cites W2095324495 @default.
- W2894450523 cites W2095772449 @default.
- W2894450523 cites W2096613063 @default.
- W2894450523 cites W2096962395 @default.
- W2894450523 cites W2097308346 @default.
- W2894450523 cites W2109025268 @default.
- W2894450523 cites W2113096445 @default.
- W2894450523 cites W2114804859 @default.
- W2894450523 cites W2123306226 @default.
- W2894450523 cites W2125390309 @default.
- W2894450523 cites W2125498357 @default.
- W2894450523 cites W2132007750 @default.
- W2894450523 cites W2144128638 @default.
- W2894450523 cites W2144343387 @default.
- W2894450523 cites W2144433748 @default.
- W2894450523 cites W2148164553 @default.
- W2894450523 cites W2157376352 @default.
- W2894450523 cites W2166351370 @default.
- W2894450523 cites W2173267959 @default.
- W2894450523 cites W2211368370 @default.
- W2894450523 cites W2294798173 @default.
- W2894450523 cites W2396348748 @default.
- W2894450523 cites W2437591545 @default.
- W2894450523 cites W2506680703 @default.
- W2894450523 cites W2600236415 @default.
- W2894450523 cites W2734256217 @default.
- W2894450523 cites W2743911451 @default.
- W2894450523 cites W2993383518 @default.
- W2894450523 cites W3099627581 @default.
- W2894450523 cites W3124253902 @default.
- W2894450523 cites W336365082 @default.
- W2894450523 cites W4248491390 @default.
- W2894450523 cites W80906861 @default.
- W2894450523 doi "https://doi.org/10.1007/978-3-319-99465-9_1" @default.
- W2894450523 hasPublicationYear "2018" @default.
- W2894450523 type Work @default.
- W2894450523 sameAs 2894450523 @default.
- W2894450523 citedByCount "1" @default.
- W2894450523 countsByYear W28944505232019 @default.
- W2894450523 crossrefType "book-chapter" @default.
- W2894450523 hasAuthorship W2894450523A5065423139 @default.
- W2894450523 hasConcept C111030470 @default.
- W2894450523 hasConcept C119322782 @default.
- W2894450523 hasConcept C119857082 @default.
- W2894450523 hasConcept C134306372 @default.
- W2894450523 hasConcept C154945302 @default.
- W2894450523 hasConcept C15744967 @default.
- W2894450523 hasConcept C202444582 @default.
- W2894450523 hasConcept C2780343955 @default.
- W2894450523 hasConcept C33676613 @default.
- W2894450523 hasConcept C33923547 @default.
- W2894450523 hasConcept C36503486 @default.
- W2894450523 hasConcept C41008148 @default.
- W2894450523 hasConcept C70518039 @default.
- W2894450523 hasConcept C77805123 @default.
- W2894450523 hasConcept C80444323 @default.
- W2894450523 hasConceptScore W2894450523C111030470 @default.
- W2894450523 hasConceptScore W2894450523C119322782 @default.
- W2894450523 hasConceptScore W2894450523C119857082 @default.
- W2894450523 hasConceptScore W2894450523C134306372 @default.
- W2894450523 hasConceptScore W2894450523C154945302 @default.
- W2894450523 hasConceptScore W2894450523C15744967 @default.
- W2894450523 hasConceptScore W2894450523C202444582 @default.
- W2894450523 hasConceptScore W2894450523C2780343955 @default.
- W2894450523 hasConceptScore W2894450523C33676613 @default.
- W2894450523 hasConceptScore W2894450523C33923547 @default.
- W2894450523 hasConceptScore W2894450523C36503486 @default.
- W2894450523 hasConceptScore W2894450523C41008148 @default.
- W2894450523 hasConceptScore W2894450523C70518039 @default.
- W2894450523 hasConceptScore W2894450523C77805123 @default.