Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894464394> ?p ?o ?g. }
- W2894464394 endingPage "670" @default.
- W2894464394 startingPage "664" @default.
- W2894464394 abstract "Combined analysis of SPECT myocardial perfusion imaging (MPI) performed with a solid-state camera on patients in 2 positions (semiupright, supine) is routinely used to mitigate attenuation artifacts. We evaluated the prediction of obstructive disease from combined analysis of semiupright and supine stress MPI by deep learning (DL) as compared with standard combined total perfusion deficit (TPD). <b>Methods:</b> 1,160 patients without known coronary artery disease (64% male) were studied. Patients underwent stress <sup>99m</sup>Tc-sestamibi MPI with new-generation solid-state SPECT scanners in 4 different centers. All patients had on-site clinical reads and invasive coronary angiography correlations within 6 mo of MPI. Obstructive disease was defined as at least 70% narrowing of the 3 major coronary arteries and at least 50% for the left main coronary artery. Images were quantified at Cedars-Sinai. The left ventricular myocardium was segmented using standard clinical nuclear cardiology software. The contour placement was verified by an experienced technologist. Combined stress TPD was computed using sex- and camera-specific normal limits. DL was trained using polar distributions of normalized radiotracer counts, hypoperfusion defects, and hypoperfusion severities and was evaluated for prediction of obstructive disease in a novel leave-one-center-out cross-validation procedure equivalent to external validation. During the validation procedure, 4 DL models were trained using data from 3 centers and then evaluated on the 1 center left aside. Predictions for each center were merged to have an overall estimation of the multicenter performance. <b>Results:</b> 718 (62%) patients and 1,272 of 3,480 (37%) arteries had obstructive disease. The area under the receiver operating characteristics curve for prediction of disease on a per-patient and per-vessel basis by DL was higher than for combined TPD (per-patient, 0.81 vs. 0.78; per-vessel, 0.77 vs. 0.73; <i>P</i> < 0.001). With the DL cutoff set to exhibit the same specificity as the standard cutoff for combined TPD, per-patient sensitivity improved from 61.8% (TPD) to 65.6% (DL) (<i>P</i> < 0.05), and per-vessel sensitivity improved from 54.6% (TPD) to 59.1% (DL) (<i>P</i> < 0.01). With the threshold matched to the specificity of a normal clinical read (56.3%), DL had a sensitivity of 84.8%, versus 82.6% for an on-site clinical read (<i>P</i> = 0.3). <b>Conclusion:</b> DL improves automatic interpretation of MPI as compared with current quantitative methods." @default.
- W2894464394 created "2018-10-05" @default.
- W2894464394 creator A5000116573 @default.
- W2894464394 creator A5005874677 @default.
- W2894464394 creator A5041557267 @default.
- W2894464394 creator A5042237487 @default.
- W2894464394 creator A5042867497 @default.
- W2894464394 creator A5044226573 @default.
- W2894464394 creator A5046039187 @default.
- W2894464394 creator A5046518576 @default.
- W2894464394 creator A5049179294 @default.
- W2894464394 creator A5052713249 @default.
- W2894464394 creator A5062520509 @default.
- W2894464394 creator A5064692290 @default.
- W2894464394 creator A5065496916 @default.
- W2894464394 creator A5066615785 @default.
- W2894464394 creator A5070896042 @default.
- W2894464394 creator A5086264921 @default.
- W2894464394 creator A5087501806 @default.
- W2894464394 creator A5088524577 @default.
- W2894464394 creator A5089319978 @default.
- W2894464394 creator A5089917119 @default.
- W2894464394 date "2018-09-27" @default.
- W2894464394 modified "2023-10-17" @default.
- W2894464394 title "Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study" @default.
- W2894464394 cites W1484080302 @default.
- W2894464394 cites W1490630562 @default.
- W2894464394 cites W154377515 @default.
- W2894464394 cites W1977001655 @default.
- W2894464394 cites W1980283223 @default.
- W2894464394 cites W1985683944 @default.
- W2894464394 cites W2012009275 @default.
- W2894464394 cites W2024544497 @default.
- W2894464394 cites W2081998696 @default.
- W2894464394 cites W2096369530 @default.
- W2894464394 cites W2103381850 @default.
- W2894464394 cites W2108598243 @default.
- W2894464394 cites W2121827537 @default.
- W2894464394 cites W2122819137 @default.
- W2894464394 cites W2171965357 @default.
- W2894464394 cites W2328176404 @default.
- W2894464394 cites W2548617625 @default.
- W2894464394 cites W2611463039 @default.
- W2894464394 cites W2765106267 @default.
- W2894464394 cites W2789532252 @default.
- W2894464394 cites W2808935392 @default.
- W2894464394 cites W2919115771 @default.
- W2894464394 doi "https://doi.org/10.2967/jnumed.118.213538" @default.
- W2894464394 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6495237" @default.
- W2894464394 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30262516" @default.
- W2894464394 hasPublicationYear "2018" @default.
- W2894464394 type Work @default.
- W2894464394 sameAs 2894464394 @default.
- W2894464394 citedByCount "105" @default.
- W2894464394 countsByYear W28944643942018 @default.
- W2894464394 countsByYear W28944643942019 @default.
- W2894464394 countsByYear W28944643942020 @default.
- W2894464394 countsByYear W28944643942021 @default.
- W2894464394 countsByYear W28944643942022 @default.
- W2894464394 countsByYear W28944643942023 @default.
- W2894464394 crossrefType "journal-article" @default.
- W2894464394 hasAuthorship W2894464394A5000116573 @default.
- W2894464394 hasAuthorship W2894464394A5005874677 @default.
- W2894464394 hasAuthorship W2894464394A5041557267 @default.
- W2894464394 hasAuthorship W2894464394A5042237487 @default.
- W2894464394 hasAuthorship W2894464394A5042867497 @default.
- W2894464394 hasAuthorship W2894464394A5044226573 @default.
- W2894464394 hasAuthorship W2894464394A5046039187 @default.
- W2894464394 hasAuthorship W2894464394A5046518576 @default.
- W2894464394 hasAuthorship W2894464394A5049179294 @default.
- W2894464394 hasAuthorship W2894464394A5052713249 @default.
- W2894464394 hasAuthorship W2894464394A5062520509 @default.
- W2894464394 hasAuthorship W2894464394A5064692290 @default.
- W2894464394 hasAuthorship W2894464394A5065496916 @default.
- W2894464394 hasAuthorship W2894464394A5066615785 @default.
- W2894464394 hasAuthorship W2894464394A5070896042 @default.
- W2894464394 hasAuthorship W2894464394A5086264921 @default.
- W2894464394 hasAuthorship W2894464394A5087501806 @default.
- W2894464394 hasAuthorship W2894464394A5088524577 @default.
- W2894464394 hasAuthorship W2894464394A5089319978 @default.
- W2894464394 hasAuthorship W2894464394A5089917119 @default.
- W2894464394 hasBestOaLocation W28944643941 @default.
- W2894464394 hasConcept C125567185 @default.
- W2894464394 hasConcept C126322002 @default.
- W2894464394 hasConcept C126838900 @default.
- W2894464394 hasConcept C146957229 @default.
- W2894464394 hasConcept C164705383 @default.
- W2894464394 hasConcept C2778213512 @default.
- W2894464394 hasConcept C2778405248 @default.
- W2894464394 hasConcept C2989005 @default.
- W2894464394 hasConcept C71924100 @default.
- W2894464394 hasConceptScore W2894464394C125567185 @default.
- W2894464394 hasConceptScore W2894464394C126322002 @default.
- W2894464394 hasConceptScore W2894464394C126838900 @default.
- W2894464394 hasConceptScore W2894464394C146957229 @default.
- W2894464394 hasConceptScore W2894464394C164705383 @default.
- W2894464394 hasConceptScore W2894464394C2778213512 @default.
- W2894464394 hasConceptScore W2894464394C2778405248 @default.