Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894471192> ?p ?o ?g. }
- W2894471192 endingPage "908" @default.
- W2894471192 startingPage "899" @default.
- W2894471192 abstract "Objectives To investigate dietary effects on the gut microbiota composition in a rat model of nonbacterial chronic prostate inflammation (CPI). Materials and methods Nonbacterial CPI was induced in the Wistar rat strain with subcutaneous testosterone and 17β‐oestradiol (E 2 ) hormone pellets for 18 weeks. Rats with placebo pellets served as healthy controls. Rats with CPI were stratified into two groups, which drank either plain tap water (control group) or tap water supplemented with 2% galactoglucomannan‐rich hemicellulose extract ( GGM group) from Norway spruce ( Picea abies ) for 5 weeks. Faecal samples were collected at the end of the study, total DNA was extracted, and the bacterial composition was analysed by 16S rRNA gene sequencing. In addition, faecal samples were assayed for short‐chain fatty acid ( SCFA ) concentrations using gas chromatography. Lipopolysaccharide‐binding protein ( LBP ) was measured in serum samples, as an indirect indicator for bacterial lipopolysaccharide (LPS) load in blood. Results The microbial biodiversity was significantly different between the treatment groups. In the rats with CPI, there was a significant increase in gut microbial populations Rikenellaceae , Odoribacter , Clostridiaceae, Allobaculum and Peptococcaceae compared with healthy rats. Conversely, levels of Bacteroides uniformis , Lactobacillus and Lachnospiraceae were decreased in rats with CPI. SCFA butyric‐, valeric‐ and caproic‐acid concentrations were also decreased in the faecal samples of the rats with CPI. In contrast, acetic acid concentrations and serum LBP were significantly elevated in CPI rats compared with healthy ones. Amongst rats with CPI, treatment with the GGM extract significantly reduced the abundance of Odoribacter and Clostridiaceae levels, and increased the B. uniformis levels compared with CPI rats drinking tap water only. In addition, GGM significantly increased the levels of butyric acid and caproic acid, and reduced the levels of LBP in serum. Conclusions Hormone‐induced nonbacterial CPI in rats is associated with specific changes in gut microbiota and secondary changes in SCFA s and LPS due to gut microbiota alteration. Our results further suggest that fermentable compounds may have a beneficial effect on CPI." @default.
- W2894471192 created "2018-10-05" @default.
- W2894471192 creator A5013170089 @default.
- W2894471192 creator A5020796581 @default.
- W2894471192 creator A5027010797 @default.
- W2894471192 creator A5061814902 @default.
- W2894471192 creator A5062339398 @default.
- W2894471192 creator A5067315881 @default.
- W2894471192 creator A5073193892 @default.
- W2894471192 creator A5024947604 @default.
- W2894471192 date "2018-11-01" @default.
- W2894471192 modified "2023-10-10" @default.
- W2894471192 title "Chronic nonbacterial prostate inflammation in a rat model is associated with changes of gut microbiota that can be modified with a galactoglucomannan-rich hemicellulose extract in the diet" @default.
- W2894471192 cites W1266271947 @default.
- W2894471192 cites W1872583110 @default.
- W2894471192 cites W1963842217 @default.
- W2894471192 cites W1969400739 @default.
- W2894471192 cites W1971732871 @default.
- W2894471192 cites W1988925586 @default.
- W2894471192 cites W2006404454 @default.
- W2894471192 cites W2010493958 @default.
- W2894471192 cites W2015567271 @default.
- W2894471192 cites W2025306961 @default.
- W2894471192 cites W2038133823 @default.
- W2894471192 cites W2040828257 @default.
- W2894471192 cites W2041032345 @default.
- W2894471192 cites W2041361990 @default.
- W2894471192 cites W2051086099 @default.
- W2894471192 cites W2056269468 @default.
- W2894471192 cites W2056386675 @default.
- W2894471192 cites W2057632593 @default.
- W2894471192 cites W2060684880 @default.
- W2894471192 cites W2063820438 @default.
- W2894471192 cites W2111857260 @default.
- W2894471192 cites W2116764810 @default.
- W2894471192 cites W2120349925 @default.
- W2894471192 cites W2122921940 @default.
- W2894471192 cites W2126446070 @default.
- W2894471192 cites W2135232490 @default.
- W2894471192 cites W2139205910 @default.
- W2894471192 cites W2139416059 @default.
- W2894471192 cites W2142445475 @default.
- W2894471192 cites W2148395963 @default.
- W2894471192 cites W2152805980 @default.
- W2894471192 cites W2154765924 @default.
- W2894471192 cites W2157201312 @default.
- W2894471192 cites W2170196186 @default.
- W2894471192 cites W2174316710 @default.
- W2894471192 cites W2277227207 @default.
- W2894471192 cites W2281377247 @default.
- W2894471192 cites W2282772932 @default.
- W2894471192 cites W2330162035 @default.
- W2894471192 cites W2343297760 @default.
- W2894471192 cites W2344885638 @default.
- W2894471192 cites W2345801223 @default.
- W2894471192 cites W2346593595 @default.
- W2894471192 cites W2416393672 @default.
- W2894471192 cites W2466678320 @default.
- W2894471192 cites W2522042288 @default.
- W2894471192 cites W2543356986 @default.
- W2894471192 cites W2556082987 @default.
- W2894471192 cites W2558599134 @default.
- W2894471192 cites W2560809255 @default.
- W2894471192 cites W2579869704 @default.
- W2894471192 cites W2586012451 @default.
- W2894471192 cites W2593375664 @default.
- W2894471192 cites W2593416970 @default.
- W2894471192 cites W2593883051 @default.
- W2894471192 cites W2596184311 @default.
- W2894471192 cites W2599986470 @default.
- W2894471192 cites W2605052214 @default.
- W2894471192 cites W2606428884 @default.
- W2894471192 cites W2606748729 @default.
- W2894471192 cites W313684097 @default.
- W2894471192 cites W4235287640 @default.
- W2894471192 doi "https://doi.org/10.1111/bju.14553" @default.
- W2894471192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30256506" @default.
- W2894471192 hasPublicationYear "2018" @default.
- W2894471192 type Work @default.
- W2894471192 sameAs 2894471192 @default.
- W2894471192 citedByCount "21" @default.
- W2894471192 countsByYear W28944711922019 @default.
- W2894471192 countsByYear W28944711922020 @default.
- W2894471192 countsByYear W28944711922021 @default.
- W2894471192 countsByYear W28944711922022 @default.
- W2894471192 countsByYear W28944711922023 @default.
- W2894471192 crossrefType "journal-article" @default.
- W2894471192 hasAuthorship W2894471192A5013170089 @default.
- W2894471192 hasAuthorship W2894471192A5020796581 @default.
- W2894471192 hasAuthorship W2894471192A5024947604 @default.
- W2894471192 hasAuthorship W2894471192A5027010797 @default.
- W2894471192 hasAuthorship W2894471192A5061814902 @default.
- W2894471192 hasAuthorship W2894471192A5062339398 @default.
- W2894471192 hasAuthorship W2894471192A5067315881 @default.
- W2894471192 hasAuthorship W2894471192A5073193892 @default.
- W2894471192 hasConcept C100544194 @default.
- W2894471192 hasConcept C104317684 @default.
- W2894471192 hasConcept C126322002 @default.