Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894490622> ?p ?o ?g. }
- W2894490622 endingPage "16" @default.
- W2894490622 startingPage "1" @default.
- W2894490622 abstract "To improve the efficiency of the periodic surveys of the asphalt pavement condition, this study puts forward an intelligent method for automating the classification of pavement crack patterns. The new approach relies on image processing techniques and computational intelligence algorithms. The image processing techniques of Laplacian pyramid and projection integral are employed to extract numerical features from digital images. Least squares support vector machine (LSSVM) and Differential Flower Pollination (DFP) are the two computational intelligence algorithms that are employed to construct the crack classification model based on the extracted features. LSSVM is employed for data classification. In addition, the model construction phase of LSSVM requires a proper setting of the regularization and kernel function parameters. This study relies on DFP to fine-tune these two parameters of LSSVM. A dataset consisting of 500 image samples and five class labels of alligator crack, diagonal crack, longitudinal crack, no crack, and transverse crack has been collected to train and verify the established approach. The experimental results show that the Laplacian pyramid is really helpful to enhance the pavement images and reveal the crack patterns. Moreover, the hybridization of LSSVM and DFP, named as DFP-LSSVM, used with the Laplacian pyramid at the level 4 can help us to achieve the highest classification accuracy rate of 93.04%. Thus, the new hybrid approach of DFP-LSSVM is a promising tool to assist transportation agencies in the task of pavement condition surveying." @default.
- W2894490622 created "2018-10-05" @default.
- W2894490622 creator A5038919661 @default.
- W2894490622 date "2018-10-01" @default.
- W2894490622 modified "2023-10-14" @default.
- W2894490622 title "Classification of Asphalt Pavement Cracks Using Laplacian Pyramid-Based Image Processing and a Hybrid Computational Approach" @default.
- W2894490622 cites W1595159159 @default.
- W2894490622 cites W1596717185 @default.
- W2894490622 cites W1960097882 @default.
- W2894490622 cites W1967371971 @default.
- W2894490622 cites W1981401636 @default.
- W2894490622 cites W2041545686 @default.
- W2894490622 cites W2075502112 @default.
- W2894490622 cites W2090926585 @default.
- W2894490622 cites W2099967398 @default.
- W2894490622 cites W2119902719 @default.
- W2894490622 cites W2128628015 @default.
- W2894490622 cites W2143539328 @default.
- W2894490622 cites W2151103935 @default.
- W2894490622 cites W2153812483 @default.
- W2894490622 cites W2155529731 @default.
- W2894490622 cites W2163352987 @default.
- W2894490622 cites W2187426533 @default.
- W2894490622 cites W2195180028 @default.
- W2894490622 cites W2227400815 @default.
- W2894490622 cites W2299705419 @default.
- W2894490622 cites W2346511712 @default.
- W2894490622 cites W2474796106 @default.
- W2894490622 cites W2516567929 @default.
- W2894490622 cites W2520959394 @default.
- W2894490622 cites W2576935672 @default.
- W2894490622 cites W2598804554 @default.
- W2894490622 cites W2604691965 @default.
- W2894490622 cites W2618859419 @default.
- W2894490622 cites W2626688319 @default.
- W2894490622 cites W2752810206 @default.
- W2894490622 cites W2767213246 @default.
- W2894490622 cites W2791299376 @default.
- W2894490622 cites W2793051107 @default.
- W2894490622 cites W2795850749 @default.
- W2894490622 cites W2799323087 @default.
- W2894490622 cites W2799391334 @default.
- W2894490622 cites W2800343216 @default.
- W2894490622 cites W2806229851 @default.
- W2894490622 cites W2807698901 @default.
- W2894490622 cites W2810188946 @default.
- W2894490622 cites W2884786778 @default.
- W2894490622 cites W3100933494 @default.
- W2894490622 doi "https://doi.org/10.1155/2018/1312787" @default.
- W2894490622 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6188601" @default.
- W2894490622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30364045" @default.
- W2894490622 hasPublicationYear "2018" @default.
- W2894490622 type Work @default.
- W2894490622 sameAs 2894490622 @default.
- W2894490622 citedByCount "8" @default.
- W2894490622 countsByYear W28944906222019 @default.
- W2894490622 countsByYear W28944906222020 @default.
- W2894490622 countsByYear W28944906222022 @default.
- W2894490622 countsByYear W28944906222023 @default.
- W2894490622 crossrefType "journal-article" @default.
- W2894490622 hasAuthorship W2894490622A5038919661 @default.
- W2894490622 hasBestOaLocation W28944906221 @default.
- W2894490622 hasConcept C114614502 @default.
- W2894490622 hasConcept C12267149 @default.
- W2894490622 hasConcept C142575187 @default.
- W2894490622 hasConcept C153180895 @default.
- W2894490622 hasConcept C154945302 @default.
- W2894490622 hasConcept C196216189 @default.
- W2894490622 hasConcept C20479862 @default.
- W2894490622 hasConcept C2524010 @default.
- W2894490622 hasConcept C33923547 @default.
- W2894490622 hasConcept C41008148 @default.
- W2894490622 hasConcept C47432892 @default.
- W2894490622 hasConcept C74193536 @default.
- W2894490622 hasConceptScore W2894490622C114614502 @default.
- W2894490622 hasConceptScore W2894490622C12267149 @default.
- W2894490622 hasConceptScore W2894490622C142575187 @default.
- W2894490622 hasConceptScore W2894490622C153180895 @default.
- W2894490622 hasConceptScore W2894490622C154945302 @default.
- W2894490622 hasConceptScore W2894490622C196216189 @default.
- W2894490622 hasConceptScore W2894490622C20479862 @default.
- W2894490622 hasConceptScore W2894490622C2524010 @default.
- W2894490622 hasConceptScore W2894490622C33923547 @default.
- W2894490622 hasConceptScore W2894490622C41008148 @default.
- W2894490622 hasConceptScore W2894490622C47432892 @default.
- W2894490622 hasConceptScore W2894490622C74193536 @default.
- W2894490622 hasLocation W28944906221 @default.
- W2894490622 hasLocation W28944906222 @default.
- W2894490622 hasLocation W28944906223 @default.
- W2894490622 hasLocation W28944906224 @default.
- W2894490622 hasOpenAccess W2894490622 @default.
- W2894490622 hasPrimaryLocation W28944906221 @default.
- W2894490622 hasRelatedWork W1809875158 @default.
- W2894490622 hasRelatedWork W182893198 @default.
- W2894490622 hasRelatedWork W2021427222 @default.
- W2894490622 hasRelatedWork W2041399278 @default.
- W2894490622 hasRelatedWork W2129011754 @default.
- W2894490622 hasRelatedWork W2163073107 @default.