Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894499027> ?p ?o ?g. }
- W2894499027 endingPage "1783" @default.
- W2894499027 startingPage "1764" @default.
- W2894499027 abstract "ABSTRACT Electrical anisotropy in earth media increases the complexity of magnetotelluric responses. Magnetotelluric models based on anisotropic media must be developed to fully understand observed data. This paper presents a three‐dimensional algorithm for calculating magnetotelluric responses of arbitrary anisotropic media in the frequency domain. Using a staggered‐grid finite difference method, the model space is discretized into rectangular blocks with electric fields on the edges of each block and the magnetic fields normal to the faces of each block. The electric field Helmholtz vector equation that considers a full 3 × 3 conductivity tensor is calculated numerically under two orthogonal polarizations. In calculating the boundary values on the four sides of the three‐dimensional anisotropic model, we adopt different procedures for calculating the two‐dimensional responses on the sides in the x and y directions. The responses for a layered anisotropic model and a three‐dimensional isotropic model calculated with this algorithm are compared with the corresponding analytical and numerical solutions, respectively. The comparisons show that the algorithm's approximations are highly precise for a wide frequency band. A typical two‐dimensional anisotropic model and a general three‐dimensional anisotropic model were also constructed, and their responses were calculated. These anisotropic models have ordinary structures but can produce phase rolling out of quadrant magnetotelluric responses, which indicates that considering electrical anisotropy may improve our interpretation of observed data. Using this algorithm, we can model the observed data from the northern Qaidam Basin in northern Tibet, where ultrahigh‐pressure metamorphic rocks are exposed along an old suture, and seismic anisotropy was indicated in neighbouring areas. The phase tensors of the magnetotelluric sites at this location show large skew angles, and the corresponding phase splits are distinct in the off‐diagonal impedance elements. Although the isotropic three‐dimensional electrical structure can model the profile data well, the structure shows a sequence of conductive and resistive bodies in the mid‐lower crust of the north Qaidam Basin, which is very spatially inhomogeneous, and a simple intrinsic anisotropic body can also produce similar surficial responses. Using the three‐dimensional anisotropic algorithm, we found an equivalent anisotropic replacement for this area. The results of the three‐dimensional anisotropy modelling of the magnetotelluric data from the northern Tibetan Plateau show the valuable applicability of the three‐dimensional anisotropic algorithm in testing the qualitative presumption of electrical anisotropy." @default.
- W2894499027 created "2018-10-05" @default.
- W2894499027 creator A5008087924 @default.
- W2894499027 creator A5026368567 @default.
- W2894499027 creator A5034177305 @default.
- W2894499027 creator A5066321040 @default.
- W2894499027 date "2018-10-23" @default.
- W2894499027 modified "2023-10-14" @default.
- W2894499027 title "Three-dimensional magnetotelluric responses for arbitrary electrically anisotropic media and a practical application" @default.
- W2894499027 cites W1154960393 @default.
- W2894499027 cites W1504229129 @default.
- W2894499027 cites W1866179438 @default.
- W2894499027 cites W1965367244 @default.
- W2894499027 cites W1968170481 @default.
- W2894499027 cites W1968735454 @default.
- W2894499027 cites W1970116172 @default.
- W2894499027 cites W1972336790 @default.
- W2894499027 cites W1974105417 @default.
- W2894499027 cites W1975727572 @default.
- W2894499027 cites W1983801093 @default.
- W2894499027 cites W1988271447 @default.
- W2894499027 cites W1990337383 @default.
- W2894499027 cites W2003105834 @default.
- W2894499027 cites W2005624911 @default.
- W2894499027 cites W2017703230 @default.
- W2894499027 cites W2018716067 @default.
- W2894499027 cites W2023841053 @default.
- W2894499027 cites W2032046892 @default.
- W2894499027 cites W2032476115 @default.
- W2894499027 cites W2034709634 @default.
- W2894499027 cites W2035013738 @default.
- W2894499027 cites W2035598920 @default.
- W2894499027 cites W2036869588 @default.
- W2894499027 cites W2038188003 @default.
- W2894499027 cites W2041774199 @default.
- W2894499027 cites W2043629586 @default.
- W2894499027 cites W2044969052 @default.
- W2894499027 cites W2056016625 @default.
- W2894499027 cites W2057120368 @default.
- W2894499027 cites W2071918782 @default.
- W2894499027 cites W2075103055 @default.
- W2894499027 cites W2088736399 @default.
- W2894499027 cites W2088819669 @default.
- W2894499027 cites W2102175925 @default.
- W2894499027 cites W2103097210 @default.
- W2894499027 cites W2103311380 @default.
- W2894499027 cites W2108982325 @default.
- W2894499027 cites W2113979318 @default.
- W2894499027 cites W2115993629 @default.
- W2894499027 cites W2116027322 @default.
- W2894499027 cites W2119969303 @default.
- W2894499027 cites W2123620025 @default.
- W2894499027 cites W2123889035 @default.
- W2894499027 cites W2125863549 @default.
- W2894499027 cites W2128658779 @default.
- W2894499027 cites W2134597148 @default.
- W2894499027 cites W2140245220 @default.
- W2894499027 cites W2141145746 @default.
- W2894499027 cites W2142063750 @default.
- W2894499027 cites W2143296955 @default.
- W2894499027 cites W2145238881 @default.
- W2894499027 cites W2154746660 @default.
- W2894499027 cites W2161612608 @default.
- W2894499027 cites W2164930133 @default.
- W2894499027 cites W2169855008 @default.
- W2894499027 cites W2205649521 @default.
- W2894499027 cites W2322063813 @default.
- W2894499027 cites W2329671315 @default.
- W2894499027 cites W2521649394 @default.
- W2894499027 cites W2792338440 @default.
- W2894499027 cites W4254248257 @default.
- W2894499027 doi "https://doi.org/10.1111/1365-2478.12690" @default.
- W2894499027 hasPublicationYear "2018" @default.
- W2894499027 type Work @default.
- W2894499027 sameAs 2894499027 @default.
- W2894499027 citedByCount "5" @default.
- W2894499027 countsByYear W28944990272020 @default.
- W2894499027 countsByYear W28944990272021 @default.
- W2894499027 countsByYear W28944990272022 @default.
- W2894499027 countsByYear W28944990272023 @default.
- W2894499027 crossrefType "journal-article" @default.
- W2894499027 hasAuthorship W2894499027A5008087924 @default.
- W2894499027 hasAuthorship W2894499027A5026368567 @default.
- W2894499027 hasAuthorship W2894499027A5034177305 @default.
- W2894499027 hasAuthorship W2894499027A5066321040 @default.
- W2894499027 hasConcept C112313211 @default.
- W2894499027 hasConcept C120665830 @default.
- W2894499027 hasConcept C121332964 @default.
- W2894499027 hasConcept C127313418 @default.
- W2894499027 hasConcept C134306372 @default.
- W2894499027 hasConcept C184050105 @default.
- W2894499027 hasConcept C2524010 @default.
- W2894499027 hasConcept C33923547 @default.
- W2894499027 hasConcept C60799052 @default.
- W2894499027 hasConcept C62520636 @default.
- W2894499027 hasConcept C69990965 @default.
- W2894499027 hasConcept C73000952 @default.
- W2894499027 hasConcept C8058405 @default.